-1
x - 1
\(\frac{3(1 - 5x)}{x + 1}\)
1
3(1 - 5x)
Correct answer is D
\(\frac{5}{x + 1} - \frac{3}{1 - x} - \frac{7x - 1}{x^{2} - 1} = \frac{?}{x + 1}\)
\(\frac{5(x - 1) - 3(- (x + 1)) - 7x - 1}{x^{2} - 1}\)
= \(\frac{5x - 5 + 3x + 3 - 7x - 1}{x^{2} - 1}\)
= \(\frac{x - 1}{x^{2} - 1}\)
= \(\frac{x - 1}{(x - 1)(x + 1)}\)
= \(\frac{1}{x + 1}\).
The numerator = 1.
500
2 log10 5
10
25
log105 x 10100
Correct answer is E
102 + log105 = log10 10100 + log105
= log105 x 10100
1.03
2.31
3.69
10.5
25
Correct answer is B
log 10.5 = log \(\frac{21}{2}\)
= log 21 - log 2
= log(3 x 7) - log 2
= log 3 + log 7 - log 2
= 1.10 + 1.90 - 0.69
= 3 - 0.69
= 2.31
Solve the equation for the positive values of \(\theta\) less than 360o. 3 tan \(\theta\) + 2 = -1
135o or 315o
45o or 135o
315o or 180o
315v + 45o
360o or 315o
Correct answer is A
3 tan \(\theta\) + 2 = -1
3 tan \(\theta\) \(\frac{-3}{3}\) = -1
\(\theta\) = tan -1(-1)
\(\theta\) = 360o - 45o
= 315o
\(\theta\) = 180 - 45o = 135o
188.57cm2
1320cm2
188cm2
188.08cm2
10cm2
Correct answer is A
S = curved surface area = \(\pi\)rL
= \(\frac{22}{7}\) x 6 x 10
= 188.57cm2