JAMB Mathematics Past Questions & Answers - Page 146

726.

(Numbers indicate the lengths of the sides of the triangles) If the area of \(\bigtriangleup\) PQR is k2sq. units what is the area of the shades portion?

A.

\(\frac{5}{9}\)k2 sq. units

B.

\(\frac{1}{3}\)k2 sq. units

C.

\(\frac{8}{9}\)k2 sq. units

D.

\(\frac{7}{9}\)k2 sq. units

E.

\(\frac{2}{3}\)k2 sq. u

Correct answer is A

Area of shaded portion = Area of triangle PQR - Area of inner triangle

Area of triangle given 3 sides a, b, c = \(\sqrt{s(s - a)(s - b)(s - c)}\)

where \(s = \frac{a + b + c}{2} \)

Area of PQR :

\(s = \frac{3 + 5 + 6}{2} = \frac{14}{2} = 7\)

Area = \(\sqrt{7(7 - 3)(7 - 5)(7 - 6)}\)

= \(\sqrt{7(4)(2)(1)} = \sqrt{56}\)

\(\implies K^{2} = \sqrt{56}\)

Area of inner triangle :

\(s = \frac{2 + 4 + \frac{10}{3}}{2} = \frac{14}{3}\)

Area = \(\sqrt{\frac{14}{3} (\frac{14}{3} - 2)(\frac{14}{3} - 4)(\frac{14}{3} - \frac{10}{3})}\)

= \(\sqrt{\frac{14}{3} (\frac{8}{3})(\frac{2}{3})(\frac{4}{3})}\)

= \(\sqrt{\frac{896}{81}}\)

= \(\sqrt{\frac{16}{81}} \times \sqrt{56}\)

= \(\frac{4}{9} K^{2}\)

\(\therefore \text{The area of the shaded portion} = K^{2} - \frac{4}{9}K^{2} = \frac{5}{9}K^{2}\)

727.

In the figure, PQ is parallel to SQ ; QS bisets < PSQ, < PQS is 65o and < RPS is 20o. What is the size of < PRS?

A.

45o

B.

35o

C.

40o

D.

30o

E.

42o

Correct answer is D

PSR = 65o x 2

= 130o

PRS = 180o - (130o + 20o)

= 30o

728.

In the figure, PQ and QR are chords of the circle PQR. QRS is a straight line and PR is equal to RS, < PSR is 20o. What is the size of  <POQ.

A.

70o

B.

90o

C.

80o

D.

40o

E.

60o

Correct answer is C

Isosceles Triangle PSR: 

RSP ≡ RPS → 20º 

That is PRQ = 40º

POQ = 2 * 40 = 80º (Angle subtended by chord PQ at centre is twice angle subtended at circumference).

The size of POQ = 80º

729.

If O is the centre of the circle, < POS equls

A.

70o

B.

75o

C.

105o

D.

140o

E.

150o

Correct answer is E

Since O is the centre of the circle < POS = 150o

i.e. < substended at the centre is twice that substended at any part of the circumference

730.

In this figure, PQRS is a parallelogram, PS = PT and < PST = 55\(^o\). The size of <PQR is

A.

125o

B.

120o

C.

115o

D.

110o

E.

10o

Correct answer is D

Both pairs of opp. angles are equal

< STP = 55\(^o\) - isosceles angle

< TSR = 55\(^o\) - alternate angle to < STP

Hence, < PSR = 55\(^o\) + 55\(^o\) = 110\(^o\)

\(\therefore\) < PQR = 110\(^o\)