(Numbers indicate the lengths of the sides of the triangles) If the area of \(\bigtriangleup\) PQR is k2sq. units what is the area of the shades portion?

(Numbers indicate the lengths of the sides of the triangles) If the area of \(\bigtriangleup\) PQR is k2sq. units what is the area of the shades portion?

A.

\(\frac{5}{9}\)k2 sq. units

B.

\(\frac{1}{3}\)k2 sq. units

C.

\(\frac{8}{9}\)k2 sq. units

D.

\(\frac{7}{9}\)k2 sq. units

E.

\(\frac{2}{3}\)k2 sq. u

Correct answer is A

Area of shaded portion = Area of triangle PQR - Area of inner triangle

Area of triangle given 3 sides a, b, c = \(\sqrt{s(s - a)(s - b)(s - c)}\)

where \(s = \frac{a + b + c}{2} \)

Area of PQR :

\(s = \frac{3 + 5 + 6}{2} = \frac{14}{2} = 7\)

Area = \(\sqrt{7(7 - 3)(7 - 5)(7 - 6)}\)

= \(\sqrt{7(4)(2)(1)} = \sqrt{56}\)

\(\implies K^{2} = \sqrt{56}\)

Area of inner triangle :

\(s = \frac{2 + 4 + \frac{10}{3}}{2} = \frac{14}{3}\)

Area = \(\sqrt{\frac{14}{3} (\frac{14}{3} - 2)(\frac{14}{3} - 4)(\frac{14}{3} - \frac{10}{3})}\)

= \(\sqrt{\frac{14}{3} (\frac{8}{3})(\frac{2}{3})(\frac{4}{3})}\)

= \(\sqrt{\frac{896}{81}}\)

= \(\sqrt{\frac{16}{81}} \times \sqrt{56}\)

= \(\frac{4}{9} K^{2}\)

\(\therefore \text{The area of the shaded portion} = K^{2} - \frac{4}{9}K^{2} = \frac{5}{9}K^{2}\)