A circle with centre (5,-4) passes through the point (5, ...
A circle with centre (5,-4) passes through the point (5, 0). Find its equation.
x\(^2\) + y\(^2\) + 10x + 8y + 25 =0
x\(^2\) + y\(^2\) +10x - 8y - 25 = 0
x\(^2\) + y\(^2\) - 10x + 8y + 25 =0
x\(^2\) + y\(^2\) -10x - 8y - 25 = 0
Correct answer is C
(x - h)\(^2\) + (y - k)\(^2\) = r\(^2\)
x\(^2\) - 2hx + y\(^2\) - 2ky + h\(^2\) + k\(^2\) = r\(^2\)
x\(^2\) - 2(3)x + y\(^2\) - 2(-4) y + 5\(^2\) + (-4)\(^2\) = r\(^2\)
x\(^2\) - 10x + y\(^2\) + 8y + 25 + 16 = r\(^2\)
x\(^2\) - 10x + y\(^2\) + 8y + 41 = r\(^2\)
at point (5,0)
5\(^2\) - 10(5) + 0\(^2\) + 8(0) + 41 = r\(^2\)
25 - 50 + 41 = r\(^2\)
16 = r\(^2\)
r = \(\sqrt{16}\)
= 4
x\(^2\) + y\(^2\) - 10x + 8y + 25 = 0
Solve the inequality \(x^{2} - 2x \geq 3\)...
Find the equation of a circle with centre (2, -3) and radius 2 units. ...
Given that \(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} 5...
Three forces \(F_{1} = (8 N, 300°), F_{2} = (6 N, 090°)\) and \(F_{3} = (4 N, 180°)\) ac...
Simplify \(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}}\)....
Find the domain of \(g(x) = \frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}}\)...
Evaluate \(\int^1_0 x(x^2-2)^2 dx\)...
Given that \(\log_{3}(x - y) = 1\) and \(\log_{3}(2x + y) = 2\), find the value of x...