A circle with centre (5,-4) passes through the point (5, ...
A circle with centre (5,-4) passes through the point (5, 0). Find its equation.
x\(^2\) + y\(^2\) + 10x + 8y + 25 =0
x\(^2\) + y\(^2\) +10x - 8y - 25 = 0
x\(^2\) + y\(^2\) - 10x + 8y + 25 =0
x\(^2\) + y\(^2\) -10x - 8y - 25 = 0
Correct answer is C
(x - h)\(^2\) + (y - k)\(^2\) = r\(^2\)
x\(^2\) - 2hx + y\(^2\) - 2ky + h\(^2\) + k\(^2\) = r\(^2\)
x\(^2\) - 2(3)x + y\(^2\) - 2(-4) y + 5\(^2\) + (-4)\(^2\) = r\(^2\)
x\(^2\) - 10x + y\(^2\) + 8y + 25 + 16 = r\(^2\)
x\(^2\) - 10x + y\(^2\) + 8y + 41 = r\(^2\)
at point (5,0)
5\(^2\) - 10(5) + 0\(^2\) + 8(0) + 41 = r\(^2\)
25 - 50 + 41 = r\(^2\)
16 = r\(^2\)
r = \(\sqrt{16}\)
= 4
x\(^2\) + y\(^2\) - 10x + 8y + 25 = 0
Simplify \(\frac{\sqrt{3}}{\sqrt{3} -1} + \frac{\sqrt{3}}{\sqrt{3} + 1}\)...
If \((x - 3)\) is a factor of \(2x^{3} + 3x^{2} - 17x - 30\), find the remaining factors....
If \(\log_{3}a - 2 = 3\log_{3}b\), express a in terms of b....
Which of the following is the semi- interquartile range of a distribution? ...
If \(16^{3x} = \frac{1}{4}(32^{x - 1})\), find the value of x....
Given that \(\begin{pmatrix} 1 & -3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -6 \\ P \end{pmat...
Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n...