A binary operation * is defined on the set of real number, R, by x*y = x\(^2\) - y\(^2\) + xy, where x, \(\in\)  R. Evaluate (\(\sqrt{3}\))*(\(\sqrt{2}\))

 

\({\color{red}2x} \times 3\)

A.

1 - \(\sqrt{6}\)

B.

\(\sqrt{6}\) - 1

C.

\(\sqrt{6}\)

D.

1 + \(\sqrt{6}\)

Correct answer is D

x*y = x\(^2\) - y\(^2\) + xy

(\(\sqrt{3}\))*(\(\sqrt{2}\)) = (\(\sqrt{3}\))\(^2\) - (\(\sqrt{2}\))\(^2\) + \(\sqrt{3}\) x \(\sqrt{2}\) 

= 3 - 2 + \(\sqrt{6}\)

= 1 + \(\sqrt{6}\)