14.3°
55.9°
59.5°
75.6°
Correct answer is C
\(\overrightarrow{r} . \overrightarrow{t} = |\overrightarrow{r}||\overrightarrow{t}|\cos \theta\)
\(\overrightarrow{r} . \overrightarrow{t} = (3i + 4j) . (-5i + 12j) = -15 + 48 = 33\)
\(|\overrightarrow{r}| = \sqrt{3^{2} + 4^{2}} = \sqrt{25} = 5\)
\(|\overrightarrow{t}| = \sqrt{(-5)^{2} + 12^{2}| = \sqrt{169} = 13\)
\(\cos \theta = \frac{\overrightarrow{r} . \overrightarrow{t}}{|\overrightarrow{r}||\overrightarrow{t}|}\)
\(\cos \theta = \frac{33}{5 \times 13} = \frac{33}{65}\)
\(\theta = \cos^{-1} {\frac{33}{65}} \approxeq 59.5°\)
If \(x = i - 3j\) and \(y = 6i + j\), calculate the angle between x and y...
Express 75° in radians, leaving your answer in terms of \(\pi\)....
Simplify \(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}}\)....
Express \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\) in the form \(p\sqrt{3} + q\sqrt{2}\)...
Given \(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k...
The angle of a sector of a circle is 0.9 radians. If the radius of the circle is 4cm, find the ...
Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)...
Express \(\frac{x^{2} + x + 4}{(1 - x)(x^{2} + 1)}\) in partial fractions....