\(\frac{6 + \sqrt{2}}{4}\)
\(\frac{3 + \sqrt{6}}{4}\)
\(\frac{\sqrt{2} - \sqrt{6}}{4}\)
\(\frac{3 - \sqrt{6}}{4}\)
Correct answer is C
\(\cos (x + y) = \cos x \cos y - \sin x \sin y \)
\(\cos (60 + 45) = \cos 60 \cos 45 - \sin 60 \sin 45\)
= \(\frac{1}{2} \times \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}\)
= \(\frac{\sqrt{2} - \sqrt{6}}{4}\)
Given that P = { x: 0 ≤ x ≤ 36, x is a factor of 36 divisible by 3} and Q = { x...
Given that \(\frac{3x + 4}{(x - 2)(x + 3)}≡\frac{P}{x + 3}+\frac{Q}{x - 2}\),find the value of...
Differentiate \(\frac{5x^ 3+x^2}{x}\), x ≠ 0 with respect to x....
If \(P = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\), find \((P^{2} + P)\)....
Simplify \(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}}\)....
\(Simplify: \frac{log √27 - log √8}{log 3 - log 2}\)...
A particle starts from rest and moves in a straight line such that its velocity, V ms\(^{-1}\),...
The sum, \(S_{n}\), of a sequence is given by \(S_{n} = 2n^{2} - 5\). Find the 6th term...