\(Differentiate f (x) = \frac{1}{(1 - x^2)^5}\) with respect to \(x\).

A.

\(\frac{-5x}{(1-x^2)^6}\)

B.

\(\frac{-10x}{(1-x^2)^6}\)

C.

\(\frac{5x}{(1-x^2)^6}\)

D.

\(\frac{10x}{(1-x^2)^6}\)

Correct answer is D

\(y = \frac{1} {(1 - x^2)^5} = (1-x^2)^{-5}\)

Let u = \(1 - x^2; y = u ^{-5}\)

\(\frac{du}{ dx}=-2x;\frac{dy}{ du}=-5u^{-6}\)

Using chain rule:

\(\frac{dy}{dx}=\frac{dy}{du}\times\frac{du}{ dx}\)

\(\frac{dy}{dx}=-2x\times-5u^{-6}\)

\(\frac{dy}{dx}=-2x\times-5(1 - x^2)^{-6}\)

\(\therefore\frac{dy}{dx} = 10x(1-x^2)^{-6}=\frac{10x}{(1-x^2)^6}\)