\(3\sqrt{2}\)
\(5\sqrt{2}\)
\(\frac{5\sqrt{2}}{2}\)
\(\frac{3\sqrt{2}}{2}\)
Correct answer is C
\(\frac{\sqrt{3} + \sqrt{48}}{\sqrt{6}} = \frac{\sqrt{3} + 4\sqrt{3}}{\sqrt{6}}\)
\(\frac{5\sqrt{3}}{\sqrt{6} = \frac{5\sqrt{3} \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}}\)
\(\frac{5\sqrt{18}{6} = \frac{15\sqrt{2}}{6}\)
= \(\frac{5\sqrt{2}}{2}\)
If \(P = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}\), find \((P^{2} + P)\)....
Evaluate \(4p_2 + 4C_2 - 4p_3\)...
If \(g(x) = \frac{x + 1}{x - 2}, x \neq -2\), find \(g^{-1}(2)\)....
Find the minimum value of \(y = x^{2} + 6x - 12\)....
A polynomial is defined by \(f(x + 1) = x^{3} + px^{2} - 4x + 2\), find f(2)...
If \((2x^{2} - x - 3)\) is a factor of \(f(x) = 2x^{3} - 5x^{2} - x + 6\), find the other factor...
Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)...
Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ ...