\(\sin^{2} \theta\)
\(\sec^{2} \theta\)
\(\tan^{2} \theta\)
\(\cos^{2} \theta\)
Correct answer is D
\((1 + \sin \theta)(1 - \sin \theta) = 1 - \sin \theta + \sin \theta - \sin^{2} \theta\)
\(= 1 - \sin^{2} \theta\)
Recall, \(\cos^{2} \theta + \sin^{2} \theta = 1\)
\(\therefore 1 - \sin^{2} \theta = \cos^{2} \theta\).
If the midpoint of the line joining (1 - k, -4) and (2, k + 1) is (-k, k), find the value of k. ...
Evaluate \(\int_{-1}^{0} (x+1)(x-2) \mathrm{d}x\)...
Solve (\(\frac{1}{9}\))\(^{x + 2}\) = 243\(^{x - 2}\) ...
If Un = kn\(^2\) + pn, U\(_1\) = -1, U\(_5\) = 15, find the values of k and p....
Simplify: \(\frac{\cos 2\theta - 1}{\sin 2\theta}\)...
Simplify \(\sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{-\frac{1}{2}}\)...
Find the equation to the circle \(x^{2} + y^{2} - 4x - 2y = 0\) at the point (1, 3)....