\(\frac{9}{10}, \frac{27}{10}\)
\(\frac{17}{27}, -\frac{17}{27}\)
\(\frac{4}{5}, -\frac{3}{5}\)
\(\frac{4}{7}, \frac{-3}{7}\)
Correct answer is C
Given \(V = xi +yj\), the direction cosines are \(\frac{x}{|V|}, \frac{y}{|V|}\).
\(|4i - 3j| = \sqrt{4^{2} + (-3)^{2}} = \sqrt{25} = 5\)
Direction cosines = \(\frac{4}{5}, \frac{-3}{5}\).
Evaluate \(\int_{1}^{2} \frac{4}{x^{3}} \mathrm {d} x\)...
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...
Find the stationary point of the curve \(y = 3x^{2} - 2x^{3}\)....
The fourth term of a geometric sequence is 2 and the sixth term is 8. Find the common ratio. ...
Given that M is the midpoint of T (2, 4) and Q (-8, 6), find the length of MQ . ...
If \(y = 2(2x + \sqrt{x})^{2}\), find \(\frac{\mathrm d y}{\mathrm d x}\)....