Express the force F = (8 N, 150°) in the form (a i + ...
Express the force F = (8 N, 150°) in the form (a i + b j) where a and b are constants
\(4\sqrt{3} i - 4j\)
\(4 i - 4\sqrt{3} j\)
\(- 4 i + 4\sqrt{3} j\)
\(- 4\sqrt{3} i + 4j\)
Correct answer is D
\(F = F\cos \theta i + F \sin \theta j\)
\((8 N, 150°) = 8 \cos 150 i + 8 \sin 150 j\)
= \(- 8 \cos 30 i + 8 \sin 30 j\)
= \(-8(\frac{\sqrt{3}}{2}) i + 8(\frac{1}{2} j\)
= \(-4\sqrt{3} i + 4 j\)
If y = (5 - x)\(^{-3}\), and \(\frac{dy}{dx}\)...
Which of the following is the same as \(\sin (270 + x)°\)?...
The equation of a circle is \(3x^{2} + 3y^{2} + 6x - 12y + 6 = 0\). Find its radius...
Evaluate \(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)...
Given that \(y = x(x + 1)^{2}\), calculate the maximum value of y....
Solve \(\log_{2}(12x - 10) = 1 + \log_{2}(4x + 3)\)...
Solve; \(\frac{P}{2} + \frac{k}{3}\) = 5 and 2p = k = 6 simultaneously...
The equation of a circle is \(3x^{2} + 3y^{2} + 24x - 12y = 15\). Find its radius....