\(\frac{-(2x + y)}{x}\)
\(\frac{(2x - y)}{x}\)
\(\frac{-x}{2x + y}\)
\(\frac{(2x + y)}{x}\)
Correct answer is A
\(\frac{\mathrm d}{\mathrm d x}(x^2 + xy - 5) = \frac{\mathrm d (x^{2})}{\mathrm d x} + \frac{\mathrm d (xy)}{\mathrm d x} - \frac{\mathrm d (5)}{\mathrm d x} = 0\)
= \(2x + x\frac{\mathrm d y}{\mathrm d x} + y = 0\)
\(\implies x\frac{\mathrm d y}{\mathrm d x} = -(2x + y)\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{-(2x + y)}{x}\)
In which of the following series can be the formula S = \(\frac{a}{1 - r}\) where a is the firs...
Find the 21st term of the Arithmetic Progression (A.P.): -4, -1.5, 1, 3.5,... ...
Find the domain of \(g(x) = \frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}}\)...
If P = \(\begin {pmatrix} 2 & 3\\ -4 & 1 \end {pmatrix}\), Q = \(\begin{pmat...
Marks 5 - 7 8 - 10 11 - 13 14 - 16 17 - 19 20 - 22 Frequency 4 7 26 41 1...