\(\frac{-(2x + y)}{x}\)
\(\frac{(2x - y)}{x}\)
\(\frac{-x}{2x + y}\)
\(\frac{(2x + y)}{x}\)
Correct answer is A
\(\frac{\mathrm d}{\mathrm d x}(x^2 + xy - 5) = \frac{\mathrm d (x^{2})}{\mathrm d x} + \frac{\mathrm d (xy)}{\mathrm d x} - \frac{\mathrm d (5)}{\mathrm d x} = 0\)
= \(2x + x\frac{\mathrm d y}{\mathrm d x} + y = 0\)
\(\implies x\frac{\mathrm d y}{\mathrm d x} = -(2x + y)\)
\(\frac{\mathrm d y}{\mathrm d x} = \frac{-(2x + y)}{x}\)
If sin x = \(\frac{12}{13}\) and sin y = \(\frac{4}{5}\), where x and y are acute angles, find&...
Marks 2 3 4 5 6 7 8 No of students 5 7 9 6 3 6 4 The table above sho...
\(Differentiate f (x) = \frac{1}{(1 - x^2)^5}\) with respect to \(x\)....
Which of the following quadratic curves will not intersect with the x- axis? ...
Given that \((\sqrt{3} - 5\sqrt{2})(\sqrt{3} + \sqrt{2}) = p + q\sqrt{6}\), find q....