\(\frac{1}{54}\)
\(\frac{13}{54}\)
\(\frac{20}{27}\)
\(\frac{41}{54}\)
Correct answer is B
P(only one hit target) = P(Kofi not Ama) + P(Ama not Kofi)
P(Kofi not Ama) = P(Kofi and Ama') = \(\frac{1}{6} \times \frac{8}{9} = \frac{8}{54}\)
P(Ama not Kofi) = P(Ama and Kofi') = \(\frac{1}{9} \times \frac{5}{6} = \frac{5}{54}\)
P(only one hit target) = \(\frac{8}{54} + \frac{5}{54} = \frac{13}{54}\)