\(\frac{1}{54}\)
\(\frac{13}{54}\)
\(\frac{20}{27}\)
\(\frac{41}{54}\)
Correct answer is B
P(only one hit target) = P(Kofi not Ama) + P(Ama not Kofi)
P(Kofi not Ama) = P(Kofi and Ama') = \(\frac{1}{6} \times \frac{8}{9} = \frac{8}{54}\)
P(Ama not Kofi) = P(Ama and Kofi') = \(\frac{1}{9} \times \frac{5}{6} = \frac{5}{54}\)
P(only one hit target) = \(\frac{8}{54} + \frac{5}{54} = \frac{13}{54}\)
If \(\begin{pmatrix} p+q & 1\\ 0 & p-q \end {pmatrix}\) = \(\begin{pmatrix} 2 & 1 ...
If \((x - 3)\) is a factor of \(2x^{3} + 3x^{2} - 17x - 30\), find the remaining factors....
Given that \(\frac{1}{8^{2y - 3y}} = 2^{y + 2}\)....
Find the equation of the line which passes through (-4, 3) and parallel to line y = 2x + 5. ...
Calculate, correct to one decimal place, the angle between 5i + 12j and -2i + 3j. ...
Find the nth term of the linear sequence (A.P) (5y + 1), ( 2y + 1), (1- y),... ...
Given that 2x + 3y - 10 and 3x = 2y - 11, calculate the value of (x - y). ...