Given that \(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\)
= x + y\(\sqrt{15}\), find the value of (x + y)
1\(\frac{3}{5}\)
1\(\frac{2}{5}\)
1\(\frac{1}{5}\)
\(\frac{1}{5}\)
Correct answer is C
\(\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}\) = x + y\(\sqrt{15}\)
cross multiply to have: \(\sqrt{3}\) + \(\sqrt{5}\) = x\(\sqrt{5}\) + 5y\(\sqrt{3}\)
Collect like roots : x\(\sqrt{5}\) = \(\sqrt{5}\) → x = 1
5y\(\sqrt{3}\) = \(\sqrt{3}\) → y = \(\frac{1}{5}\)
∴ ( x + y ) = 1 + \(\frac{1}{5}\)
= 1\(\frac{1}{5}\)