If cos x = \(\sqrt{\frac{a}{b}}\) find cosec x

A.

\(\frac{b}{\sqrt{b - a}}\)

B.

\(\sqrt{\frac{b}{a}}\)

C.

\(\sqrt{\frac{b}{b - a}}\)

D.

\(\sqrt{\frac{b - a}{a}}\)

Correct answer is C

cosx = \(\sqrt{\frac{a}{b}}\)

y2 + \(\sqrt{(a)^2}\) = \(\sqrt{(b)^2}\) by pythagoras

y2 = b - a

∴ y = b - a

cosec x = \(\frac{1}{sin x}\) = \(\frac{1}{y}\)

\(\frac{b}{y}\) = \(\frac{\sqrt{b}}{\sqrt{b - a}}\)

= \(\sqrt{\frac{b}{b - a}}\)