Make q the subject of the formula in the equation \(\frac{mn}{a^2} - \frac{pq}{b^2} = 1\)

A.

\(q = \frac{b^2(mn - a^2)}{a^2 p}\)

B.

\(q = \frac{m^2 n - a^2}{p^2}\)

C.

\(q = \frac{mn - 2b^2}{a^2}\)

D.

\(q = \frac{b^2 (n^2 - ma^2)}{n}\)

Correct answer is A

\(\frac{mn}{a^2} - \frac{pq}{b^2} = 1\)

\(\frac{mn}{a^2} - 1 = \frac{pq}{b^2}\)

\(\frac{mn - a^2}{a^2} = \frac{pq}{b^2}\)

\(pq = \frac{b^2 (mn - a^2)}{a^2}\)

\(q = \frac{b^2(mn - a^2)}{a^2 p}\)