The amount A to which a principal P amounts at r% compound interest for n years is given by the formula A = P(1 + (r ÷ 100)\(^n\). Find A, if P = 126, r = 4 and n = 2.

A.

N132.50K

B.

N136.30K

C.

N125.40K

D.

N257.42K

Correct answer is B

\( A = P \left(1 + \frac{r}{100}\right)^n \)

Where P = 126, r = 4,n = 2

A=126 \( \left(1 + \frac{4}{100}\right)^2 \text{Using LCM} \)

=126 \( \left(\frac{100+4}{100}\right)^2 = 126 \left(\frac{104}{100}\right)^2 \)


=126 \( \left(1.04^2 \right) \)

= 126 * 1.04 * 1.04

=136.28

A = 136.30 (approx.)

The Amount A, = N136.30k