32
30
-30
-32
Correct answer is C
Let \(p(x) = -2x^3 + 6x^2 + 17x - 21\)
Using the remainder theorem
Let \(x + 1 = 0\)
∴ \(x = -1\)
Since, \((x + 1)\) divides \(p(x)\), then, remainder will be p(-1)
⇒ p(-1) = -2(-1)\(^3 + 6(-1)^2\) + 17(-1) - 21
∴ p(-1) = -30
Find the equation whose roots are 2 and \(-3\frac{1}{2}\)...
If (0.25)\(^y\) = 32, find the value of y....
Make Q the subject of formula when \(L=\frac{4}{3}M\sqrt{PQ}\) ...
Find the gradient of the line joining the points (3, 2) and (1, 4) ...
Evaluate \(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} -1 + \frac{3}{4})]\)...