How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
5
8
6
3
Correct answer is B
\(\begin{vmatrix} 2 & -5 & 3 \\ x & 1 & 4 \\ 0 & 3 & 2 \end{vmatrix} = 132\)
\(\implies 2 \begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix} - (-5) \begin{vmatrix} x & 4 \\ 0 & 2 \end{vmatrix} + 3 \begin{vmatrix} x & 1 \\ 0 & 3 \end{vmatrix} = 132\)
\(2(2 - 12) + 5(2x) + 3(3x) = 132\)
\(-20 + 10x + 9x = 132\)
\(19x = 152\)
\(x = 8\)
If 2x\(^2\) + x - 3 divides x - 2, find the remainder.
7
3
5
6
Correct answer is A
When you divide a polynomial p(x) by (x - a), the remainder = p(a)
i.e. In the case of 2x\(^2\) + x - 3 \(\div\) (x - 2), the remainder = p(2).
= 2(2)\(^2\) + 2 - 3
= 8 + 2 - 3
= 7.
Find the polynomial if given q(x) = x\(^2\) - x - 5, d(x) = 3x - 1 and r(x) = 7.
3x\(^3\) - 4x\(^2\) - 14x + 12
3x\(^2\) + 3x - 7
3x\(^3\) + 4x\(^2\) + 14x - 12
3x\(^2\) - 3x + 4
Correct answer is A
Given q(x) [quotient], d(x) [divisor] and r(x) [remainder], the polynomial is gotten by multiplying the quotient and the divisor and adding the remainder.
i.e In this case, the polynomial = (x\(^2\) - x - 5)(3x - 1) + 7.
= (3x\(^3\) - x\(^2\) - 3x\(^2\) + x - 15x + 5) + 7
= (3x\(^3\) - 4x\(^2\) - 14x + 5) + 7
= 3x\(^3\) - 4x\(^2\) - 14x + 12
Determine the values for which \(x^2 - 7x + 10 \leq 0\)
2 \(\leq\) x \(\geq\) 5
-2 \(\leq\) x \(\leq\) 3
-2 \(\leq\) x \(\geq\) 3
2 \(\leq\) x \(\leq\) 5
Correct answer is D
\(x^2 - 7x + 10 \leq 0\)
Solve for \(x^2 - 7x + 10 = 0\)
We have, (x - 5)(x - 2) \(\leq\) 0.
Conditions:
Case 1: (x - 5) \(\leq\) 0, (x - 2) \(\geq\) 0.
\(\implies\) x \(\leq\) 5; x \(\geq\) 2.
2 \(\leq\) x \(\leq\) 5.
Choosing x = 3,
3\(^2\) - 7(3) + 10 = 9 - 21 + 10
= -2 \(\leq\) 0.
\(\therefore\) 2 \(\leq\) x \(\leq\) 5.
Find the value of x for \(\frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}\)
x \(\geq\) -5
x \(\geq\) -1
x \(\leq\) -1
x \(\leq\) 3
Correct answer is C
\(\frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}\)
\(\frac{2 + 2x - 6}{3} \geq \frac{4x - 6}{5}\)
\(\frac{2x - 4}{3} \geq \frac{4x - 6}{5}\)
\(5(2x - 4) \geq 3(4x - 6)\)
\(10x - 20 \geq 12x - 18\)
\(10x - 12x \geq -18 + 20\)
\(-2x \geq 2\)
\(x \leq -1\)