Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

441.

Find all median of the numbers 89, 141, 130, 161, 120, 131, 131, 100, 108 and 119 

A.

131

B.

125

C.

123

D.

120

Correct answer is B

Arrange in ascending order

89, 100, 108, 119, 120,130, 131, 131, 141, 161

Median = \(\frac{120 + 130}{2}\) = 125

442.

Factorise (4a + 3) \(^2\) - (3a - 2)\(^2\)

A.

(a + 1)(a + 5)

B.

(a - 5)(7a - 1)

C.

(a + 5)(7a + 1)

D.

a(7a + 1)

Correct answer is C

[(4a + 3) \(^2\) - (3a - 2)\(^2\) = a\(^2\) - b\(^2\) = (a + b) (a - b) 

= [(4a + 3) + (3a - 2)] [(4a + 3) - (3a - 2)]

= [4a + 3 + 3a - 2] [4a + 3 - 3a + 2]

= (7a + 1)(a + 5)

(a + 5) (7a + 1) 

443.

Evaluate (212)\(_3\) - (121)\(_3\) + (222)\(_3\)

A.

(313)\(_3\)

B.

(1000)\(_3\)

C.

(1020)\(_3\)

D.

(1222)\(_3\)

Correct answer is C

Evaluate (212)\(_3\) - (121)\(_3\) + (222)\(_3\)

(212)\(_3\)  + (222)\(_3\) = 1211\(_3\)

→ 1211\(_3\) - 121\(_3\)

= 1020\(_3\)

 

444.

The annual salary of Mr. Johnson Mohammed for 1989 was N12,000.00. He spent this on agriculture projects, education of his children, food items, saving , maintenance and miscellaneous items as shown in the pie chart

How much did he spend on food items?

A.

N9,700.00

B.

N6,700.00

C.

N2,000.00

D.

N4,000.00

E.

N2,300.00

Correct answer is E

Degree for food items = 360° - (120° + 80° + 43° + 30° + 18°)

= 360° - 291°

= 69°

∴∴ Amount spent on food items = \(\frac{69}{360}\)×12,000.00

= N2300.00

445.

Evaluate \(\frac{2\sin 30 + 5\tan 60}{\sin 60}\), leaving your answer in surd form.

A.

\(\frac{2\sqrt{3}}{3} + 10\)

B.

\(\frac{3\sqrt{2} - 1}{5}\)

C.

\(\frac{3\sqrt{2} + 1}{5}\)

D.

\(\frac{2\sqrt{3}}{3} - 10\)

Correct answer is A

\(\frac{2\sin 30 + 5\tan 60}{\sin 60}\)

\(\sin 30 = \frac{1}{2}; \tan 60 = \sqrt{3}; \sin 60 = \frac{\sqrt{3}}{2}\)

\(\therefore \frac{2\sin 30 + 5\tan 60}{\sin 60} = \frac{2(\frac{1}{2}) + 5(\sqrt{3})}{\frac{\sqrt{3}}{2}}\)\)

= \(\frac{1 + 5\sqrt{3}}{\frac{\sqrt{3}}{2}}\)

= \(\frac{2(1 + 5\sqrt{3})}{\sqrt{3}}\)

= \(\frac{2 + 10\sqrt{3}}{\sqrt{3}}\)

Rationalizing, we get

= \(\frac{2\sqrt{3} + 30}{3}\)

= \(\frac{2}{3} \sqrt{3} + 10\)