How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
What is the circumference of latitude 0°S if R is the radius of the earth?
R cos\(\theta\)
2\(\pi\) R cos \(\theta\)
R sin \(\theta\)
2\(\pi\) R sin \(\theta\)
Correct answer is B
Circumference of Latitude 0oS where R is the radius of the earth is = 2\(\pi\) R cos \(\theta\)
\(\frac{5}{17}\)
\(\frac{8}{17}\)
\(\frac{8}{15}\)
\(\frac{12}{17}\)
Correct answer is A
ABCD is the floor, by pythagoras
AC2 = 144 + 81 = \(\sqrt{225}\)
AC = 15cm
Height of room is 8m, diagonal of floor is 15m
∴ The cosine of the angle which a diagonal of the room makes with the floor is EC2 = 152
cosine = \(\frac{\text{adj}}{\text{hyp}}\) = \(\frac{15}{17}\)
\(\sqrt{6}\)
4\(\sqrt{3}\)
\(\sqrt{3}\)
\(\frac{12}{\sqrt{3}}\)
Correct answer is B
From the diagram, WYZ = 60o, XYW = 180o - 60o
= 120o
LX = 30o
XWY = 180o - 120o + 30o
XWY = 30o
WXY = XYW = 30o
Side XY = YW
YW = 8m, sin 60o = \(\frac{3}{2}\)
∴ sin 60o = \(\frac{h}{YW}\), sin 60o = \(\frac{h}{8}\)
h = 8 x \(\frac{3}{2}\)
= 4\(\sqrt{3}\)
If tan \(\theta\) = \(\frac{m^2 - n^2}{2mn}\) find sec\(\theta\)
\(\frac{m^2 + n^2}{(m^2 - n^2)}\)
\(\frac{m^2 + n^2}{2mn}\)
\(\frac{mn}{2(m^2 + n^2)}\)
\(\frac{m^2n^2}{2(m^2 - n^2)}\)
Correct answer is B
Tan \(\theta\) = \(\frac{m^2 - n^2}{2mn}\)
\(\frac{\text{Opp}}{\text{Adj}}\) by pathagoras theorem
= Hyp2 = Opp2 + Adj2
Hyp2 = (m2 - n2) + (2mn)2
Hyp2 = m4 - 2m2n4 - 4m2 - n2
Hyp2 = m4 + 2m2 + n2n
Hyp2 = (m2 - n2)2
Hyp2 = \(\frac{m^2 + n^2}{2mn}\)
The sine, cosine and tangent of 210o are respectively
\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{2}\)
\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{3}\)
\(\frac{1}{2}\), \(\frac{\sqrt{3}}{2}\), \(\frac{\sqrt{3}}{2}\)
\(\frac{-1}{2}\), \(\frac{\sqrt{-3}}{2}\), \(\frac{\sqrt{3}}{3}\)
Correct answer is D
210o = 180o - 210o = - 30o
From ratio of sides, sin -30o = -\(\frac{1}{2}\)
Cos 210o = 180o - 210o = -30o
= cos -30o = \(\frac{-3}{2}\)
But tan 30o = \(\frac{1}{\sqrt{3}}\), rationalizing this
= \(\frac{1}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\) = \(\frac{\sqrt{3}}{3}\)
∴ = \(\frac{-1}{2}\), \(\frac{\sqrt{-3}}{2}\), \(\frac{\sqrt{3}}{3}\)