How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
\(\frac{2}{3}\)
\(\frac{2}{15}\)
\(\frac{1}{2}\)
\(\frac{1}{3}\)
Correct answer is D
P(R1) = \(\frac{6}{10}\)
= \(\frac{2}{3}\)
P(R1 n R11) = P(both red)
\(\frac{3}{5}\) x \(\frac{5}{9}\)
= \(\frac{1}{3}\)
7.0
6.0
5.2
5.0
Correct answer is B
Area of trapezium = 14cm2
Area of trapezium = \(\frac{1}{2}\)(a + b)h
14 = \(\frac{1}{2}\)(4 + 3)h
14 = \(\frac{7}{2}\)h
h = \(\frac{14 \times 2}{7}\)
= 4
Area of SQR = \(\frac{1}{2}\)(3 x 4)
= \(\frac{12}{2}\)
= 6.0
5kg
16kg
19kg
6kg
Correct answer is A
\(\frac{1\sqrt{3}}{(\frac{1}{2})^2}\)
= \(\frac{4}{\sqrt{3}}\)
= \(\frac{\sqrt{3}}{\sqrt{3}}\)
= \(\frac{4\sqrt{3}}{\sqrt{3}}\)
m = 64kg, V = \(\frac{4\pi r^3}{3}\)
= \(\frac{4\pi(4)^3}{3}\)
= \(\frac{256\pi}{3}\) x 10-6m3
density(P) = \(\frac{\text{Mass}}{\text{Volume}}\)
= \(\frac{64}{\frac{256\pi}{3 \times 10^{-6}}}\)
= \(\frac{64 \times 3 \times 10^{-6}}{256}\)
= \(\frac{3}{4 \times 10^{-6}}\)
m = PV = \(\frac{3}{4 \pi \times 10^{-6}}\) x \(\frac{4}{3}\) \(\pi\)[32 - 22] x 10-6
\(\frac{3}{4 \times 10^{-6}}\) x \(\frac{4}{3}\) x 5 x 10-6
= 5kg
\(\frac{4}{\sqrt{3}}\)
\(4 \sqrt{3}\)
\(\sqrt{\frac{3}{2}}\)
\(\frac{1}{\sqrt{3}}\)
\(\frac{2}{\sqrt{3}}\)
Correct answer is A
\(\frac{\cot (90 - \theta)}{sin^2\theta}\)
\(\cot (90 - \theta) = \tan \theta\)
\(\therefore \frac{\cot (90 - \theta)}{\sin^{2} \theta} = \frac{\tan \theta}{\sin^{2} \theta}\)
\(\tan \theta = \frac{\sqrt{3}}{3}\)
\(\sin \theta = \frac{1}{2} \implies \sin^{2} \theta = \frac{1}{4}\)
\(\frac{\cot(90 - \theta)}{\sin^{2} \theta} = \frac{\sqrt{3}}{3}\div\frac{1}{4}\)
= \(\frac{4}{\sqrt{3}}\)
Find the area of a regular hexagon inscribed in a circle of radius 8cm
16\(\sqrt{3}\) cm3
96\(\sqrt{3}\) cm3
192\(\sqrt{3}\) cm3
16\(\sqrt{3}\) cm2
33cm2
Correct answer is B
Area of a regular hexagon = 8 x 8 x sin 60o
= 32 x \(\frac{\sqrt{3}}{2}\)
Area = 16\(\sqrt{3}\) x 6 = 96 \(\sqrt{3}\)cm2