\(\frac{4}{\sqrt{3}}\)
\(4 \sqrt{3}\)
\(\sqrt{\frac{3}{2}}\)
\(\frac{1}{\sqrt{3}}\)
\(\frac{2}{\sqrt{3}}\)
Correct answer is A
\(\frac{\cot (90 - \theta)}{sin^2\theta}\)
\(\cot (90 - \theta) = \tan \theta\)
\(\therefore \frac{\cot (90 - \theta)}{\sin^{2} \theta} = \frac{\tan \theta}{\sin^{2} \theta}\)
\(\tan \theta = \frac{\sqrt{3}}{3}\)
\(\sin \theta = \frac{1}{2} \implies \sin^{2} \theta = \frac{1}{4}\)
\(\frac{\cot(90 - \theta)}{\sin^{2} \theta} = \frac{\sqrt{3}}{3}\div\frac{1}{4}\)
= \(\frac{4}{\sqrt{3}}\)
If x - 4 is a factor of x2 - x - k, then k is...
What is the value of x when y = 5? y = \(\frac{1}{2}\) x + 1...
The graph of the relation y = x2 + 2x + k passes through the point (2, 0). Find the values of k ...
In triangles XYZ and XQP, XP = 4cm, XQ = 5cm and PQ = QY = 3cm. Find ZY ...
From the cyclic quadrilateral MNOP above, find the value of x....