\(\frac{4}{\sqrt{3}}\)
\(4 \sqrt{3}\)
\(\sqrt{\frac{3}{2}}\)
\(\frac{1}{\sqrt{3}}\)
\(\frac{2}{\sqrt{3}}\)
Correct answer is A
\(\frac{\cot (90 - \theta)}{sin^2\theta}\)
\(\cot (90 - \theta) = \tan \theta\)
\(\therefore \frac{\cot (90 - \theta)}{\sin^{2} \theta} = \frac{\tan \theta}{\sin^{2} \theta}\)
\(\tan \theta = \frac{\sqrt{3}}{3}\)
\(\sin \theta = \frac{1}{2} \implies \sin^{2} \theta = \frac{1}{4}\)
\(\frac{\cot(90 - \theta)}{\sin^{2} \theta} = \frac{\sqrt{3}}{3}\div\frac{1}{4}\)
= \(\frac{4}{\sqrt{3}}\)
If tan α = \(\frac{1}{2}\) and tan β = \(\frac{1}{3}\) and both α and β are acute, find tan (α ...
If \(T = 2\pi \sqrt{\frac{l}{g}}\), make g the subject of the formula ...
If b = a + cp and r = ab + \(\frac{1}{2}\)cp2, express b2 in terms of a, c, r....
Given that \(\theta\) is an acute angle and sin \(\theta\) = \(\frac{m}{n}\), find cos \(\theta\)...
find the first quartile of 7,8,7,9,11,8,7,9,6 and 8. ...
In the diagram above, |QR| = 12cm and |QS| = 10cm. If ∠PQR = 90°, ∠RSQ = 90° an...
make w the subject of the relation \(\frac{a + bc}{wd + f}\) = g...