How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
\((2x - y)(2x + y)(4x^2 + y^2)\)
\((2x + y)(2x + y)(4x^2 + y^2)\)
\((2x - y)(2x - y)(4x^2 + y^2)\)
\((2x - y)(2x + y)(4x^2 - y^2)\)
Correct answer is A
16\(x^4 - y^4\)
= 2\(^4x^4 - y^4\)
= \((2x)^4 - y^4\)
= \(((2x)^2)^2 - (y^2)^2\)
Using a\(^2 - b^2\) = (a - b)(a + b) identity
= ((2x)\(^2 - y^2)((2x)^2 + y^2)\)
Using the identity one more time
= \((2x - y)(2x + y)((2x)^2 + y^2)\)
∴ \((2x - y)(2x + y)(4x^2 + y^2)\)
750
850
250
150
Correct answer is C
Let F be the set of people who can speak French and E be the set of people who can speak English. Then,
n(F) = 400
n(E) = 350
n(F ∪ E) = 500
We have to find n(F ∩ E).
Now, n(F ∪ E) = n(F) + n(E) – n(F ∩ E)
⇒ 500 = 400 + 350 – n(F ∩ E)
⇒ n(F ∩ E) = 750 – 500 = 250.
∴ 250 people can speak both languages.
Find the value of y, if log (y + 8) + log (y - 8) = 2log 3 + 2log 5
y = ±5
y = ±10
y = ±17
y = ±13
Correct answer is C
log (y + 8) + log (y - 8) = 2log 3 + 2log 5
⇒ log (y + 8)(y - 8) = 2log 3 + 2log 5 (log ab = log a + log b)
⇒ log (y\(^2\) -8y + 8y - 64) = log 3\(^2\) + log 5\(^2\)
⇒ log (y\(^2\) - 64) = log 3\(^2\) + log 5\(^2\)
⇒ log (y\(^2\) - 64) = log 9 + log 25
⇒ log (y\(^2\) - 64) = log (9 × 25)
⇒ log(y\(^2\) - 64) = log 225
⇒ y\(^2\) - 64 = 225
⇒ y\(^2\) = 225 + 64
⇒ y\(^2\) = 289
⇒ y = ±√289
∴ y = ±17
Find the value of y if \(402_y = 102_{ten}\)
4
2
5
3
Correct answer is C
\(402_y = 102_ten\)
⇒ 4 x y\(^2\) + 0 x y\(^1\) + 2 x y\(^0\) = 102
⇒ 4y\(^2\) + 0 + 2 x 1 = 102
⇒ 4y\(^2\) + 2 = 102
⇒ 4y\(^2\) = 102 - 2
⇒ 4y\(^2\) = 100
⇒ y\(^2 = \frac {100}{4}\)
⇒ y\(^2\) = 25
∴ y = √25 = 5
Determine the area of the region bounded by y = \(2x^2\) + 10 and Y = \(4x + 16\).
18
\(\frac {-10}{3}\)
\(\frac {44}{3}\)
\(\frac {64}{3}\)
Correct answer is D
To find the point of intersection, equate the two equations
⇒ 2x\(^2\) + 10 = 4x + 16
⇒ 2x\(^2\) + 10 - 4x - 16 = 0
⇒ 2x\(^2\) - 4x - 6 = 0
Factorize
⇒ 2(x + 1)(x - 3) = 0
∴ x = -1 or 3
The curves will intersect at -1 and 3
Area = \(\int^b_a\) [upper function] - [lower function] dx
= \(\int^3_1 4x + 16 - (2x^2 + 10) dx\)
= \(\int^3_1 -2x^2 + 4x + 6dx\)
= \((\frac {-2x^3}{3} + 2x^2 + 6x)^3_1\)
= \((\frac {-2(3)^3}{3} + 2(3)^2 + 6(3)) - (\frac {-2(-1)^3}{3} + 2(-1)^2 + 6(-1))\)
= 18 - \((\frac {10}{3})\)
= 18 + \(\frac {10}{3}\)
= \(\frac {64}{3}\)