\((2x - y)(2x + y)(4x^2 + y^2)\)
\((2x + y)(2x + y)(4x^2 + y^2)\)
\((2x - y)(2x - y)(4x^2 + y^2)\)
\((2x - y)(2x + y)(4x^2 - y^2)\)
Correct answer is A
16\(x^4 - y^4\)
= 2\(^4x^4 - y^4\)
= \((2x)^4 - y^4\)
= \(((2x)^2)^2 - (y^2)^2\)
Using a\(^2 - b^2\) = (a - b)(a + b) identity
= ((2x)\(^2 - y^2)((2x)^2 + y^2)\)
Using the identity one more time
= \((2x - y)(2x + y)((2x)^2 + y^2)\)
∴ \((2x - y)(2x + y)(4x^2 + y^2)\)
Simplify (6 - x - x2) ÷ (x2 - 4) ...
The nth term of a sequence is given as \(4 \times 3^{(3 - n)}\). Calculate the third term....
What is the size of each interior angle of a 12-sided regular polygon? ...
Solve the inequality x2 + 2x > 15....
Solve the pair of equation for x and y respectively \(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{...
Find the capacity in liters of a cylindrical well of radius 1 meter and depth 14 meters [π = 22/...
In the diagram, QTR is a straight line and < PQT = 30o. find the sin of < PTR...