How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Simplify:(\(\frac{10\sqrt{3}}{\sqrt{5}} - \sqrt{15}\))2
75.00
15.00
8.66
3.87
Correct answer is B
Note that \(\frac{10\sqrt{3}}{\sqrt{5}} = \frac{10\sqrt{3}}{\sqrt{5}} \times - \frac{\sqrt{5}}{\sqrt{5}}\)
= \(\frac{10\sqrt{15}}{\sqrt{5}} = 2\sqrt{15}\)
hence, (\(\frac{10\sqrt{3}}{\sqrt{5}} - \sqrt{15}\))2 = (\(2\sqrt{15} - \sqrt{15}\))2
= (\(2\sqrt{15} - \sqrt{15}\))(\(2\sqrt{15} - \sqrt{15}\))
= 4\(\sqrt{15 \times 15} - 2\sqrt{15 \times 15} - 2\sqrt{15 x 15} + \sqrt{15 \times 15}\)
= 4 x 15 - 2 x 15 - 2 x 15 + 15
= 60 - 30 - 30 + 15
= 15
Simplify: (\(\frac{3}{4} - \frac{2}{3}\)) x 1\(\frac{1}{5}\)
\(\frac{1}{60}\)
\(\frac{5}{72}\)
\(\frac{1}{10}\)
1\(\frac{7}{10}\)
Correct answer is C
(\(\frac{3}{4} - \frac{2}{3}\)) x 1\(\frac{1}{5}\)
= (\(\frac{9 - 8}{12} \times \frac{6}{5}\))
= \(\frac{1}{12} \times \frac{6}{5}\)
= \(\frac{1}{10}\)
If 23x + 101x = 130x, find the value of x
7
6
5
4
Correct answer is D
23x + 101x = 130x
2 x X1 + 3 x Xo + 1 x X2 + 0 x X1 + 1 x Xo
= 1 x Xo = 1 x X2 + 3 x X1 + 0 x Xo
= X2 + 3x + 0
2x + 3 = x2 + 0 + 1 + x2 + 3x
2x - 3x + x2 - x2 = -3 - 1
- x = -4
x = 4
68o
72o
112o
124o
Correct answer is D
In \(\Delta\) XYZ, 2m + 2n + 68o = 180o
2(m + n) + 68o = 180o...(1)
in \(\Delta\) XOZ, m + n + q = 180o ...(2)
(m + n) = 180o - q...(3)
substituting 180o - q for (m + n) in (1) gives
2(180o - q) + 68o = 180o
360o - 2q = 180o - 68o
360o - 2q = 112o
360o - 112o = 2q
248o = 2q
q = \(\frac{248^o}{2}\)
= 124o
hence, < XOZ = 124o
22cm
17cm
16cm
15cm
Correct answer is B
In the diagram
|AM| = |MB| - \(\frac{|AB|}{2}\)
= \(\frac{16\sqrt{3}}{2}\)cm
= 8\(\sqrt{3}\)cm
in \(\Delta\) AMO, r2 = |AM|Z + |MO|2
r2 = (8\(\sqrt{3}\))2
+ 102
= 64 x 3 + 100
= 192 + 100
= 292
r = \(\sqrt{292}\)
17.088cm
17cm