75.00
15.00
8.66
3.87
Correct answer is B
Note that \(\frac{10\sqrt{3}}{\sqrt{5}} = \frac{10\sqrt{3}}{\sqrt{5}} \times - \frac{\sqrt{5}}{\sqrt{5}}\)
= \(\frac{10\sqrt{15}}{\sqrt{5}} = 2\sqrt{15}\)
hence, (\(\frac{10\sqrt{3}}{\sqrt{5}} - \sqrt{15}\))2 = (\(2\sqrt{15} - \sqrt{15}\))2
= (\(2\sqrt{15} - \sqrt{15}\))(\(2\sqrt{15} - \sqrt{15}\))
= 4\(\sqrt{15 \times 15} - 2\sqrt{15 \times 15} - 2\sqrt{15 x 15} + \sqrt{15 \times 15}\)
= 4 x 15 - 2 x 15 - 2 x 15 + 15
= 60 - 30 - 30 + 15
= 15
If \(\frac{2}{x-3}\) - \(\frac{3}{x-2}\) = \(\frac{p}{(x-3)(x -2)}\), find p....
What is the general term of the sequence 3, 8, 13, 18, ...? ...
Evaluate the integral \(\int^{\frac{\pi}{4}}_{\frac{\pi}{12}} 2 \cos 2x \mathrm {d} x\)...
Given that \(\sqrt{2} = 1.414\), find without using tables, the value of \(\frac{1}{\sqrt{2}}\)...
If logax = p, express x in terms of a and p ...
The range of the distribution is ...