75.00
15.00
8.66
3.87
Correct answer is B
Note that \(\frac{10\sqrt{3}}{\sqrt{5}} = \frac{10\sqrt{3}}{\sqrt{5}} \times - \frac{\sqrt{5}}{\sqrt{5}}\)
= \(\frac{10\sqrt{15}}{\sqrt{5}} = 2\sqrt{15}\)
hence, (\(\frac{10\sqrt{3}}{\sqrt{5}} - \sqrt{15}\))2 = (\(2\sqrt{15} - \sqrt{15}\))2
= (\(2\sqrt{15} - \sqrt{15}\))(\(2\sqrt{15} - \sqrt{15}\))
= 4\(\sqrt{15 \times 15} - 2\sqrt{15 \times 15} - 2\sqrt{15 x 15} + \sqrt{15 \times 15}\)
= 4 x 15 - 2 x 15 - 2 x 15 + 15
= 60 - 30 - 30 + 15
= 15
If the sum of the roots of the equation (x - p)(2x + 1) = 0 is 1, find the value of x ...
A man 1.7m tall observes a bird on top of a tree at an angle of 30°. if the distance between the...
Find the size of the angle marked x in the diagram....
For what value of x is the expression \(\frac{2x-1}{x+3}\)not defined?...