Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

516.

\(\frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}}\)

A.

\(\frac{31}{50}\)

B.

\(\frac{20}{31}\)

C.

\(\frac{31}{20}\)

D.

\(\frac{50}{31}\)

Correct answer is D

\(\frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}}\)

\(\frac{2}{3} \div \frac{4}{5} = \frac{2}{3} \times \frac{5}{4}\)

= \(\frac{5}{6}\)

\(\frac{1}{4} + \frac{3}{5} - \frac{1}{3} = \frac{15 + 36 - 20}{60}\)

= \(\frac{31}{60}\)

\(\therefore \frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}} = \frac{5}{6} \div \frac{31}{60}\)

= \(\frac{5}{6} \times \frac{60}{31}\)

= \(\frac{50}{31}\)

517.

Given \(\sin 58° = \cos p°\), find p.

A.

48°

B.

58°

C.

32°

D.

52°

Correct answer is C

\(\sin \theta = \cos (90 - \theta)\)

\(\sin \theta = \cos (90 - 58)\)

= \(\cos 32\)

518.

Find the length of the chord |AB| in the diagram shown above.

A.

4.2 cm

B.

4.3 cm

C.

3.2 cm

D.

3.4 cm

Correct answer is D

Length of chord = \(2r \sin (\frac{\theta}{2})\)

= \(2(3) \sin (\frac{68}{2})\)

= \(6 \sin 34\)

= \(6 \times 0.559\)

= 3.354 cm \(\approxeq\)  3.4 cm

519.

Rationalize \(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)

A.

\(-5 - 2\sqrt{6}\)

B.

\(-5 + 3\sqrt{2}\)

C.

\(5 - 2\sqrt{3}\)

D.

\(5 + 2\sqrt{6}\)

Correct answer is A

\(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)

= \((\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}})(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} + \sqrt{3}})\)

= \(\frac{2 + \sqrt{6} + \sqrt{6} + 3}{2 - \sqrt{6} + \sqrt{6} - 3}\)

= \(\frac{5 + 2\sqrt{6}}{-1}\)

= \(- 5 - 2\sqrt{6}\)

520.

In a class of 50 students, 40 students offered Physics and 30 offered Biology. How many offered both Physics and Biology?

A.

42

B.

20

C.

70

D.

54

Correct answer is B

n(Total) = 50

n(Physics) = 40

n(Biology) = 30

Let n(Physics and Biology) = x

n(Physics only) = 40 -x

n(Biology only) = 30 - x

40 - x + 30 - x + x = 50

70 - x = 50

x = 20