How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
The mean of 2 - t, 4 + t, 3 - 2t, 2 + t and t - 1 is
t
-t
2
-2
Correct answer is C
Mean x = \(\frac{\sum x}{n}\)
= [(2 - t) + (4 + t) + (3 - 2t) + (2 + t) + (t - 1)] \(\div\) 5
= [11 - 1 + 3t - 3t] \(\div\) 5
= 10 \(\div\) 5
= 2
Evaluate \(\int (2x + 3)^{\frac{1}{2}} \delta x\)
\(\frac{1}{12} (2x + 3)^6 + k\)
\(\frac{1}{3} (2x + 3)^{\frac{1}{2}} + k\)
\(\frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
\(\frac{1}{12} (2x + 3)^{\frac{3}{4}} + k\)
Correct answer is C
\(\int (2x + 3)^{\frac{1}{2}} \delta x\)
let u = 2x + 3, \(\frac{\delta y}{\delta x} = 2\)
\(\delta x = \frac{\delta u}{2}\)
Now \(\int (2x + 3)^{\frac{1}{2}} \delta x = \int u^{\frac{1}{2}}.{\frac{\delta x}{2}}\)
\( = \frac{1}{2} \int u^{\frac{1}{2}} \delta u\)
\( = \frac{1}{2} u^{\frac{3}{2}} \times \frac{2}{3} + k\)
\( = \frac{1}{3} u^{\frac{3}{2}} + k\)
\( = \frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
cos 2x + k
\(\frac{1}{2}\)cos 2x + k
\(-\frac{1}{2}\)cos 2x + k
-cos 2x + k
Correct answer is C
\(\int \sin 2x dx = \frac{1}{2} (-\cos 2x) + k\)
\(- \frac{1}{2} \cos 2x + k\)
Find the minimum value of y = x2 - 2x - 3
4
1
-1
-4
Correct answer is D
y = x2 - 2x - 3,
Then \(\frac{\delta y}{\delta x} = 2x - 2\)
But at minimum point,\(\frac{\delta y}{\delta x} = 0\),
Which means 2x - 2 = 0
2x = 2
x = 1.
Hence the minimum value of y = x2 - 2x - 3 is;
ymin = (1)2 - 2(1) - 3
ymin = 1 - 2 - 3
ymin = -4
If y = cos 3x, find \(\frac{\delta y}{\delta x}\)
\(\frac{1}{3} \sin 3x\)
\(-\frac{1}{3} \sin 3x\)
3 sin 3x
-3 sin 3x
Correct answer is D
y = cos 3x
Let u = 3x so that y = cos u
Now, \(\frac{\delta y}{\delta x} = 3\),
\(\frac{\delta y}{\delta x} = -sin u\)
By the chain rule,
\(\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}\)
\(\frac{\delta y}{\delta x} = (-\sin u) (3)\)
\(\frac{\delta y}{\delta x} = -3 \sin u\)
\(\frac{\delta y}{\delta x} = -3 \sin 3x\)