\(\frac{1}{12} (2x + 3)^6 + k\)
\(\frac{1}{3} (2x + 3)^{\frac{1}{2}} + k\)
\(\frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
\(\frac{1}{12} (2x + 3)^{\frac{3}{4}} + k\)
Correct answer is C
\(\int (2x + 3)^{\frac{1}{2}} \delta x\)
let u = 2x + 3, \(\frac{\delta y}{\delta x} = 2\)
\(\delta x = \frac{\delta u}{2}\)
Now \(\int (2x + 3)^{\frac{1}{2}} \delta x = \int u^{\frac{1}{2}}.{\frac{\delta x}{2}}\)
\( = \frac{1}{2} \int u^{\frac{1}{2}} \delta u\)
\( = \frac{1}{2} u^{\frac{3}{2}} \times \frac{2}{3} + k\)
\( = \frac{1}{3} u^{\frac{3}{2}} + k\)
\( = \frac{1}{3} (2x + 3)^{\frac{3}{2}} + k\)
Multiply (x + 3y + 5) by (2x2 + 5y + 2)...
Simplify: \(\frac{x^2 - 5x - 14}{x^2 - 9x + 14}\) ...
Factorize a2x - b2y - b2x + a2y ...
For what value of x is the expression \(\frac{x^2 + 15x + 50}{x - 5}\) not defined ?...
Simplify \(\frac{(a^2 - \frac{1}{a}) (a^{\frac{4}{3}} + a^{\frac{2}{3}})}{a^2 - \frac{1}{a}^2}\)...
Given that 1/3log10 P = 1, find the value of P...
Solve the logarithmic equation: \(log_2 (6 - x) = 3 - log_2 x\)...