112(2x+3)6+k
13(2x+3)12+k
13(2x+3)32+k
112(2x+3)34+k
Correct answer is C
∫(2x+3)12δx
let u = 2x + 3, δyδx=2
δx=δu2
Now ∫(2x+3)12δx=∫u12.δx2
=12∫u12δu
=12u32×23+k
=13u32+k
=13(2x+3)32+k
Calculate the variance of 2, 3, 3, 4, 5, 5, 5, 7, 7 and 9 ...
Differentiate sin x - x cos x ...
Find the curved surface area of a cone with circular base diameter 10 cm and height 12 cm ...
Use the graph to answer the Question below What are the roots of the equation x2 + 3x - 4 = 0?...