How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
simplify \(\frac{1}{√3 - 2}\) - \(\frac{1}{√3 + 2}\)
3
\(\frac{2}{3}\)
7
-4
Correct answer is D
\(\frac{1}{√3 - 2}\) - \(\frac{1}{√3 + 2}\)
L.C.M = (3- 2) (3 + 2)
∴ \(\frac{1}{\sqrt{3 - 2}}\) - \(\frac{1}{\sqrt{3 - 2}}\) = \(\frac{\sqrt{3 + 2} - \sqrt{3 - 2}}{\sqrt{3 - 2} + \sqrt{3 - 2}}\)
\(\frac{√3 + 2 - √3 + 2}{3 - 2√3 + 2√3 - 4}\) = \(\frac{4}{3 - 2}\)
= \(\frac{4}{-1}\)
= -4
Solve for y in the equation 10^1 x 5(2y - 2) x 4(y - 1) = 1
\(\frac{3}{4}\)
\(\frac{5}{4}\)
\(\frac{2}{3}\)
5
Correct answer is C
10y x 5(2y - 2) x 4(y - 1) = 1
but 10y - (5 x 2)y = 5y x 2y
= (Law of indices)
5y x 2y x 5(2y - 2) x 4(y - 1) = 1
but 4(y - 1) = 22(y - 1)
= 2y - 2 (Law of indices)
5y x 5(2y -2) x 2(- 2) = 1
5(3y -2) x 2y x 2(2y -2) = 1
= 5(3y -2) x 2(3y -2) = 1
But ao = 1
10(3y -2) = 10o
3y - 2 = 0
∴ y = \(\frac{2}{3}\)
If 9\(^{(x - \frac{1}{2})} = 3^{x2}\) Find x
\(\frac{1}{2}\)
1
2
3
Correct answer is B
9(x - \(\frac{1}{2}\)) 3x2 = 32(x - \(\frac{1}{2}\)) = 3x2
∴ 2(x - \(\frac{1}{2}\)) = x2
2x - 1 = x2
hence x2 - 2x + 1 = 0
(x - 1)(x - 1) = 0
x = 1
Evaluate \(\frac{3524}{0.05}\) correct to 3 significant figures
705
70,000
70,480
70,500
Correct answer is D
\(\frac{3524}{0.05}\) = 70480
\(\approx\) 70500(3 s.g)
1078
1068
718
178
Correct answer is A
\(\begin{array}{c|c} 8 & 71 \\ 8 & 8 \text{rem} 7\\ 8 & 1 \text{rem} 0\end{array}\)
= 1078