How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
What value of Q will make the expression 4x2 + 5x + Q a complete square?
\(\frac{25}{16}\)
\(\frac{25}{64}\)
\(\frac{5}{8}\)
\(\frac{5}{4}\)
Correct answer is A
4x2 + 5x + Q
To make a complete square, the coefficient of x2 must be 1
= x2 + \(\frac{5x}{4}\) + \(\frac{Q}{4}\)
Then (half the coefficient of x2) should be added
i.e. x2 + \(\frac{5x}{4}\) + \(\frac{25}{64}\)
∴ \(\frac{Q}{4}\) = \(\frac{25}{64}\)
Q = \(\frac{4 \times 25}{64}\)
= \(\frac{25}{16}\)
Solve the pair of equation for x and y respectively \(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)
-1, 2
1, 2
2, 1
2, -1
Correct answer is D
\(2x^{-1} - 3y^{-1} = 4; 4x^{-1} + y^{-1} = 1\)
Let \(x^{-1}\) = a and \(y^{-1}\)= b
2a - 3b = 4 .......(i)
4a + b = 1 .........(ii)
(i) x 3 = 12a + 3b = 3........(iii)
2a - 3b = 4 ...........(i)
(i) + (iii) = 14a = 7
∴ a = \(\frac{7}{14}\) = \(\frac{1}{2}\)
From (i), 3b = 2a - 4
3b = 1 - 4
3b = -3
∴ b = -1
From substituting, \(2^{-1} = x^{-1}\)
∴ x = 2
\(y^{-1} = -1, y = -1\)
What are K and L respectively if \(\frac{1}{2}\)(3y - 4x)2 = (8x2 + kxy + Ly2)
-12, \(\frac{9}{2}\)
-6, 9
6, 9
12, \(\frac{9}{2}\)
Correct answer is A
\(\frac{1}{2}\)(3y - 4x)2 = (8x2 + kxy + Ly2)
\(\frac{1}{2}\)(9y2 - 24xy + 16x2) = 8x2 + kxy + Ly2
\(\frac{9}{2}\)y2 - 12xy) = kxy + Ly2
k = -12 ∴ L = \(\frac{9}{2}\)
Factorize 4a2 - 12ab - C2 + 9b2
4a(a - 3b) + (3b - c)2
(2a + 3b - c)(2a + 3b + c)
(2a - 3b + c)(2a - 3b - c)
4a(a - 3b) + (3b + c)
Correct answer is C
4a2 - 12ab - C2 + 9b2
rearranges: (4a2 - 12ab + 9b2) - c2
(2a - 3b)(2a - 3b) - c2 = (2a - 3b)2 - c2
= (2a - 3b + c)(2a - 3b - c)
Factorize completely \(y^3 -4xy + xy^3 - 4y\)
(y + xy)(y + 2)(y - 2)
(y - xy)(y - 2)
y(1 + x)(y + 2)(y -2)
y(1 - x)(y + 2)(y - 2)
Correct answer is C
\(y^3 -4xy + xy^3 - 4y \)
= \(y^3(1 + x) - 4y(1 + x)
\((y^3 - 4y)(1 + x) = (y^3(1 + x) - 4y(1 + x))\)
∴ = \(y(1 + x)(y + 2)(y - 2)\)