-12, \(\frac{9}{2}\)
-6, 9
6, 9
12, \(\frac{9}{2}\)
Correct answer is A
\(\frac{1}{2}\)(3y - 4x)2 = (8x2 + kxy + Ly2)
\(\frac{1}{2}\)(9y2 - 24xy + 16x2) = 8x2 + kxy + Ly2
\(\frac{9}{2}\)y2 - 12xy) = kxy + Ly2
k = -12 ∴ L = \(\frac{9}{2}\)
Simplify; [(\(\frac{16}{9}\))\(^{\frac{-3}{2}}\) x 16\(^{\frac{-3}{4}}\)]\(^{\frac{1}{3}}\)...
If \(\begin{vmatrix} 2 & -5 & 3 \\ x & 1 & 4 \\ 0 & 3 & 2 \end{vmatrix} = 13...
What is the value of x satisfying the equation \(\frac{4^{2x}}{4^{3x}}\) = 2?...
Find the value of x which satisfies the equation 5(x-7)=7-2x ...
Find the area of an equivalent triangle of side 16cm ...
Express \(\frac{5x - 12}{(x - 2)(x - 3)}\) in partial fractions...