Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

1,706.

In the figure, determine the angle marked y

A.

66o

B.

110o

C.

26o

D.

70o

E.

44o

Correct answer is A

From the diagram, < p = 44o, < Q = 70o

< y = 180o - (70 + 44o) = 66o

1,707.

In the figure, QRS is a line, PSQ = 35o, SPR = 30o and O is the centre of the circle. Find OQP.

A.

35o

B.

30o

C.

130o

D.

25o

E.

65o

Correct answer is D

< PSQ = 35o, < SPR = 30o

O is the centre of the circle, PRQ = 65o

< OQP = 90 - 65

= 25o

1,708.

In the figure, PQRSTW is a regular hexagon. QS intersects RT at V. Calculate TVS

A.

60o

B.

90o

C.

120o

D.

30o

E.

80o

Correct answer is A

From the diagram, PQRSTW is a regular hexagon.

Hexagon is a six sided polygon.

Sum of interior angles of polygon = (2n - 4)90o = [2 x 6 - 4] x 90 = 8 x 90 = 720o

each angle = \(\frac{720^o}{6} = 120^o\) and TVS = \(\frac{120}{2} = 60^o\)

1,709.

Find the area of the shaded portion of the semicircular figure.

A.

\(\frac{r^2}{4}(4 \pi - 3 \sqrt{3})\)

B.

\(\frac{r^2}{4}(2 \pi - 3 \sqrt{3})\)

C.

\(\frac{1}{2}r^2 \pi\)

D.

\(\frac{1}{8}r^2 \sqrt{3}\)

E.

\(\frac{r^2}{4}(4 \pi - 3 \sqrt{3})\)

Correct answer is B

Asector = \(\frac{60}{360} \times \pi r^2\)

= \(\frac{1}{6} \pi r^2\)

A\(\bigtriangleup\) = \(\frac{1}{2}r^2 \sin 60^o\)

\(\frac{1}{2} r^2 \times \frac{\sqrt{3}}{2} = \frac{r^2\sqrt{3}}{4}\)

A\(\text{shaded portion}\) = Asector -
A\(\bigtriangleup\)

= (\(\frac{1}{6} \pi r^2 - \frac{r^2\sqrt{3}}{4})^3\)

= \(\frac{\pi r^2}{2} - \frac{3r^2\sqrt{3}}{4}\)

= \(\frac{r^2}{4}(2 \pi - 3 \sqrt{3})\)

1,710.

Using \(\bigtriangleup\)XYZ in the figure, find XYZ

A.

29o

B.

31o

C.

31o 20'

D.

31o 18'

Correct answer is C

\(\frac{\sin y}{3} = \frac{\sin 120^o}{5}\)

sin 120o = sin 60o

5 sin y = 3 sin 60o

sin y = \(\frac{3 \sin 60^o}{5}\)

\(\frac{3 \times 0.866}{5}\)

= \(\frac{2.598}{5}\)

y = sin-1 0.5196 = 30o 18'