Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

801.

Simplify:(\(\frac{10\sqrt{3}}{\sqrt{5}} - \sqrt{15}\))2

A.

75.00

B.

15.00

C.

8.66

D.

3.87

Correct answer is B

Note that \(\frac{10\sqrt{3}}{\sqrt{5}} = \frac{10\sqrt{3}}{\sqrt{5}} \times - \frac{\sqrt{5}}{\sqrt{5}}\)

= \(\frac{10\sqrt{15}}{\sqrt{5}} = 2\sqrt{15}\)

hence, (\(\frac{10\sqrt{3}}{\sqrt{5}} - \sqrt{15}\))2 = (\(2\sqrt{15} - \sqrt{15}\))2

= (\(2\sqrt{15} - \sqrt{15}\))(\(2\sqrt{15} - \sqrt{15}\))

= 4\(\sqrt{15 \times 15} - 2\sqrt{15 \times 15} - 2\sqrt{15 x 15} + \sqrt{15 \times 15}\)

= 4 x 15 - 2 x 15 - 2 x 15 + 15

= 60 - 30 - 30 + 15

= 15

802.

Simplify: (\(\frac{3}{4} - \frac{2}{3}\)) x 1\(\frac{1}{5}\)

A.

\(\frac{1}{60}\)

B.

\(\frac{5}{72}\)

C.

\(\frac{1}{10}\)

D.

1\(\frac{7}{10}\)

Correct answer is C

(\(\frac{3}{4} - \frac{2}{3}\)) x 1\(\frac{1}{5}\)

= (\(\frac{9 - 8}{12} \times \frac{6}{5}\))

= \(\frac{1}{12} \times \frac{6}{5}\)

= \(\frac{1}{10}\)

803.

If 23x + 101x = 130x, find the value of x

A.

7

B.

6

C.

5

D.

4

Correct answer is D

23x + 101x = 130x

2 x X1 + 3 x Xo + 1 x X2 + 0 x X1 + 1 x Xo

= 1 x Xo = 1 x X2 + 3 x X1 + 0 x Xo

= X2 + 3x + 0

2x + 3 = x2 + 0 + 1 + x2 + 3x

2x - 3x + x2 - x2 = -3 - 1

- x = -4

x = 4

804.

In the diagram, \(\bar{OX}\) bisects < YXZ and \(\bar{OZ}\) bisects < YZX. If < XYZ = 68o, calculate the value of < XOZ

A.

68o

B.

72o

C.

112o

D.

124o

Correct answer is D

In \(\Delta\) XYZ, 2m + 2n + 68o = 180o

2(m + n) + 68o = 180o...(1)

in \(\Delta\) XOZ, m + n + q = 180o ...(2)

(m + n) = 180o - q...(3)

substituting 180o - q for (m + n) in (1) gives

2(180o - q) + 68o = 180o

360o - 2q = 180o - 68o

360o - 2q = 112o

360o - 112o = 2q

248o = 2q

q = \(\frac{248^o}{2}\)

= 124o

hence, < XOZ = 124o

805.

In a circle radius rcm, a chord 16\(\sqrt{3}cm\) long is 10cmfrom the centre of the circle. Find, correct to the nearest cm, the value of r

A.

22cm

B.

17cm

C.

16cm

D.

15cm

Correct answer is B

In the diagram

|AM| = |MB| - \(\frac{|AB|}{2}\)

= \(\frac{16\sqrt{3}}{2}\)cm

= 8\(\sqrt{3}\)cm

in \(\Delta\) AMO, r2 = |AM|Z + |MO|2

r2 = (8\(\sqrt{3}\))2
+ 102

= 64 x 3 + 100

= 192 + 100

= 292

r = \(\sqrt{292}\)

17.088cm

17cm