The length of the line joining points (x,4) and (-x,3) is 7 units. Find the value of x.
4√3
2√6
3√2
2√3
Correct answer is D
d = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
x1 = x, x2 = -x, y1 = 4, y2 = 3, d = 7
7 = \(\sqrt{(-x -x)^2 + (3 - 4)^2}\)
7 = \(\sqrt{(-2x)^2 + (-1)^2}\)
7 = ( \(\sqrt{4x^2 + 1}\)
square both sides
7\(^2\) = 4x\(^2\) + 1
collect like terms
4x\(^2\) = 49 - 1
4x\(^2\) = 48
x\(^2\) = \(\frac{48}{4}\)
x\(^2\) = 12
x = √12
x = 2√3
If f(x-1) = x\(^3\) + 3x\(^2\) + 4x - 5, find f(2)
61
25
20
13
Correct answer is A
x - 1 = 2
x = 3
f(2) = (3)\(^3\) + 3(3)\(^2\) + 4(3) - 5
f(2) = 27 + 27 + 12 - 5
= 61
17.55i + 13.78j
17.55j - 13.78i
-17.55i + 13.78j
-17.55i - 13.78j
Correct answer is B
Converting the forces to their rectangular forms
F = (10N, 060º)
Fx = 10cos60 = 5i
fy = 10sin60 = 8.66j
F = 5i + 8.66j
P = (15N, 120º)
Px = 15cos120 = -7.5i
py = 15sin120 = 12.99j
P = -7.5i + 12.99j
Q = (12N, 200º)
Qx = 12cos200 = -11.28i
Qy = 12sin200 = -4.1j
Q = -11.28i -4.1j
The resultant force = F + P + Q
R = 5i + 8.66j + (-7.5i + 12.99j) + (-11.28i -4.1j)
R = -13.78i + 17.55j
If α and β are roots of x\(^2\) + mx - n = 0, where m and n are constants, form the
equation | whose | roots | are | 1
α |
and | 1
β |
. |
mnx\(^2\) - n\(^2\) x - m = 0
mx\(^2\) - nx + 1 = 0
nx\(^2\) - mx + 1 = 0
nx\(^2\) - mx - 1 = 0
Correct answer is D
x\(^2\) + mx - n = 0
a = 1, b = m, c = -n
α + β = \(\frac{-b}{a}\) = \(\frac{-m}{1}\) = -m
αβ = \(\frac{c}{a}\) = \(\frac{-n}{1}\) = -n
the roots are = \(\frac{1}{α}\) and \(\frac{1}{β}\)
sum of the roots = \(\frac{1}{α}\) + \(\frac{1}{β}\)
\(\frac{1}{α}\) + \(\frac{1}{β}\) = \(\frac{α+β}{αβ}\)
α + β = -m
αβ = -n
\(\frac{α+β}{αβ}\) = \(\frac{-m}{-n}\) → \(\frac{m}{n}\)
product of the roots = \(\frac{1}{α}\) * \(\frac{1}{β}\)
\(\frac{1}{α}\) + \(\frac{1}{β}\) = \(\frac{1}{αβ}\) → \(\frac{1}{-n}\)
x\(^2\) - (sum of roots)x + (product of roots)
x\(^2\) - ( m/n )x + ( 1/-n ) = 0
multiply through by n
nx\(^2\) - mx - 1 = 0
0N
2N
3(2t + 3)N
6N
Correct answer is D
F = m * a
d = t\(^2\) + 3t.
a = \(\frac{d^2d}{dt^2}\)
\(\frac{d[d]}{dt}\) = 2t + 3
\(\frac{d^2d}{dt^2}\) = 2m/s\(^2\)
a = 2m/s\(^2\)
F = m * a
F = 3 × 2 = 6N