If tan x = \(\frac{3}{4}\), 0 < x < 90\(^o\), evaluate \(\frac{\cos x}{2 sin x}\)
\(\frac{8}{3}\)
\(\frac{3}{2}\)
\(\frac{4}{3}\)
\(\frac{2}{3}\)
Correct answer is D
y\(^2\) = 3\(^2\) + 4\(^2\)
y\(^2\) = 9 + 16
y = \(\sqrt{25}\)
= 5
\(\frac{\cos x}{2 \sin x} = \frac{4}{5} + 2 \times \frac{3}{5}\)
= \(\frac{4}{5} \times \frac{5}{6}\)
= \(\frac{2}{3}\)
14m
12m
10m
7m
Correct answer is C
H\(^2\) = 8\(^2\) + 6\(^2\) + 6\(^2\)
H\(^2\) = 64 + 36 = 100
H = \(\sqrt{100}\) = 10m
3x + 4y - 23 = 0
3x + 4y +23 = 0
3x - 4y +23 = 0
3x - 4y - 23 = 0
Correct answer is D
\(\frac{3}{4} = \frac{y + 5}{x - 1}\)
3(x - 1) = 4(y + 5)
3x - 3 = 4y + 20
3x - 4y - 23 = 0
\(\frac{2}{3}\)
\(\frac{3}{5}\)
\(\frac{7}{20}\)
\(\frac{12}{25}\)
Correct answer is C
(\(\frac{2}{5} \times \frac {3}{5}) + (\frac{3}{5} \times \frac{2}{5})\)
\(\frac{6}{25} + \frac{6}{25} = \frac{12}{25}\)
80\(^o\)
60\(^o\)
40\(^o\)
30\(^o\)
Correct answer is B
3\(x^o\) + 2\(x^o\) + 4\(x^o\) + 3\(x^o\) + 6\(x^o\) = 540\(^o\)
\(\frac{18x^o}{18} = \frac{540^o}{18}\)
\(x^o\) = 30\(^o\)
Smallest angle = 2 x 30\(^o\) = 60\(^o\)