WAEC Further Mathematics Past Questions & Answers - Page 4

16.

In how many ways can a committee of 3 women and 2 men be chosen from a group of 7 men and 5 women?

A.

500

B.

350

C.

720

D.

210

Correct answer is D

For choosing, its different 'combinations'

Options - 7 men, 5 women
To pick - 2 men, 3 women

∴ The number of ways to choose a committee of 3 women and 2 men from a group of 7 men and 5 women is:
=\(^5C_3 \times ^7C_2\)

=\(\frac{5\times4\times3}{3\times2}\times\frac{7\times6}{2\times1}\)

=\(10\times21\)

=210

17.

Adu's scores in five subjects in an examination are 85848386 and 87. Calculate the standard deviation.

A.

2.0

B.

1.4

C.

1.8

D.

1.6

Correct answer is B

n = 5

x̄ = \(\frac{∑x}{n} = \frac{85 + 84 + 83 + 86 + 87}{5} = \frac{425}{5} = 85\)

\(x\)    \(x - x̄\)           \((x - x̄)^2\)
85   0                0
84  -1                1
83  -2                4
86   1                1
87   2                4
    \(\Sigma(x - x̄)^2 = 10\)

 

\(S.D = √\frac{∑(x - x̄ )}{n} = √\frac{10}{5}\)

∴ S.D = √2 =1.4

18.

An exponential sequence (G.P.) is given by \(\frac{9}{2},\frac{3}{4},\frac{1}{8},\)....Find its sum to infinity

A.

\(5\frac{2}{5}\)

B.

\(4\frac{1}{5}\)

C.

\(13\frac{1}{2}\)

D.

\(6\frac{3}{4}\)

Correct answer is A

Sum to infinity of a G.P when /r/ < 1 = \(\frac{a}{1 - r}\)

a = \(\frac{9}{2},r = \frac{T_2}{T_1} = \frac{3}{4} + \frac{9}{2}\)

r = \(\frac{3}{4} \times \frac{2}{9} = \frac{1}{6}\)

\(S_∞ = \frac{\frac{9}{2}}{1-\frac{1}{6}} = \frac{\frac{9}{2}}{\frac{5}{6}} = \frac{27}{5}\)

\(\therefore S_∞ = 5\frac{2}{5}\)

19.

A uniform beam PQ of length 80 cm and weight 60 N rests on a support at X where | PX | = 30 cm. If the body is kept in equilibrium by a mass m kg which is placed at P , calculate the value of m
[Take g = 10 ms\(^{-2}\)]

A.

2.0

B.

3.0

C.

2.5

D.

4.0

Correct answer is C

∑ clock wise moments =∑ anti clock wise moments

= 60 x 10 = 30 x m

= 600 = 30 m

m = \(\frac{600}{30} = 20 N\)

W = mg ==> m = \(\frac{W}{g}\)

∴ m = \(\frac{20}{10} = 2kg\)

20.

If \(f : x → 2 tan x\) and \(g : x → √(x^2 + 8), find ( g o f )(45^o)\)

A.

4

B.

2√3

C.

6

D.

3√2

Correct answer is B

\(f : x → 2 tan x\)

\(g : x → √(x^2 + 8)\)

\(( g o f ) = √((2 tan x)^2 + 8)\)

\(( g o f )(45º) = √((2 tan 45º)^2 + 8)\)

= √(4 + 8) = √12

= √(4 x 3)

∴ 2√3