1.17%
6.38%
7.44%
8.035%
9.00%
Correct answer is C
%error = \(\frac{1.21 - 1.12}{1.21} \times 100%\)
= \(\frac{9}{121} \times 100%\)
= 7.44%
1.18
1.31
9.03
9.44
9.46
Correct answer is E
log x = \(\bar{2}.3675\) ; log y = 0.9750
\(x = 10^{\bar{2}.3675} = 0.02331 \)
\(y = 10^{0.9750} = 9.441 \)
\(x + y = 9.4641 \approxeq 9.46\)
Evaluate using the logarithm table, log(0.65)2
1.6258
0.6272
0.6258
3.6258
1.6272
Correct answer is D
log(0.65)2 = 2log(0.65) but log0.65 = 1.8129
∴2 x 1.8129 = 3.6258
Simplify \(\frac{\log \sqrt{8}}{\log 8}\)
1/3
1/2
1/3log√2
1/3log√8
1/2log√2
Correct answer is B
\(\frac{\log \sqrt{8}}{\log 8}\)
= \(\frac{\log 8^{\frac{1}{2}}}{log 8}\)
= \(\frac{\frac{1}{2} \log 8}{\log 8}\)
= \(\frac{1}{2}\)
Given that 1/3log10 P = 1, find the value of P
1/10
3
10
100
1000
Correct answer is E
1/3log10P = 1
log10P1/3 = log1010
P1/3 = 10 P = 1000