Solve the equation: 3a + 10 = a\(^2\)
a = 5 or a = 2
a = -5 or a = 2
a = 10 or a = 0
a = 5 or a = 0
a = 5 or a = -2
Correct answer is E
3a + 10 = a\(^2\)
a\(^2\) - 3a - 10 = 0
a\(^2\) - 5a + 2a - 10 = 0
a(a - 5) + 2(a - 5) = 0
(a - 5)(a + 2) = 0
a = 5 or a = -2.
(3a - 2)(a - 3)
(2a -2)(a - 3)
(3a - 2)(a + 3)
(3a + 2)(a - 3)
(2a-3)(a + 2)
Correct answer is A
3a\(^2\) - 11a + 6
3a\(^2\) - 9a - 2a + 6
3a(a - 3) - 2(a - 3)
= (3a - 2)(a - 3)
For what value of y is the expression \(\frac{y + 2}{y^{2} - 3y - 10}\) undefined?
y = 0
y = 2
y = 3
y = 5
y = 10
Correct answer is D
\(\frac{y + 2}{y^2 - 3y - 10}\)
\(y^2 - 3y - 10 = 0 \implies y^2 - 5y + 2y - 10 = 0\)
\(y(y - 5) + 2(y - 5) = 0\)
\((y - 5)(y + 2) = 0\)
\(\frac{y + 2}{(y - 5)(y + 2)} = \frac{1}{y - 5}\)
\(\therefore\) At y = 5, the expression \(\frac{y + 2}{y^2 - 3y - 10}\) is undefined.
Simplify: \((\frac{1}{4})^{-1\frac{1}{2}}\)
1/8
1/4
2
4
8
Correct answer is E
\((\frac{1}{4})^{-1\frac{1}{2}}\)
= \((\frac{1}{4})^{-\frac{3}{2}}\)
= \((\sqrt{\frac{1}{4}})^{-3}\)
= \((\frac{1}{2})^{-3}\)
= \(2^3\)
= 8
Find the number whose logarithm to base 10 is 2.6025
400.4
0.4004
0.04004
0.004004
0.0004004
Correct answer is A
For the log to be 2.6025, there must be three digits before the decimal point.