35cm3
154cm3
220cm3
528cm3
770cm3
Correct answer is E
\(V = \pi r^2 h\)
\(V = \frac{22}{7} \times 7 \times 7 \times 5\)
= 770 cm\(^3\)
35cm3
154cm3
220cm2
528cm2
770cm2
Correct answer is D
T.S.A of a cylinder = \(2\pi r^2 + 2\pi rh\)
= \(2\pi r(r + h)\)
= \(2 \times \frac{22}{7} \times 7 \times (7 + 5)\)
= \(44 \times 12\)
= \(528 cm^2\)
37.5litres
375 litres
3750 litres
37500 litres
375000 litres
Correct answer is B
Volume of water taken by the tank = \(\frac{3}{2} \times \frac{3}{2} \times \frac{1}{2}\)
= \(\frac{9}{8} m^3\)
= \(\frac{9}{8} \times 1000\)
= 1125 litres
\(\therefore\) Water left = (1500 - 1125) litres
= 375 litres.
24cm2
36cm2
48cm2
60cm2
96cm2
Correct answer is E
Area of rhombus = \(\frac{pq}{2}\)
where p and q are the diagonals of the rhombus.
\(\therefore A = \frac{16 \times 12}{2}\)
= 96 cm\(^2\)
In the diagram above. |AB| = 12cm, |AE| = 8cm, |DCl = 9cm and AB||DC. Calculate |EC|
10cm
9cm
8cm
7cm
6cm
Correct answer is E
|AB| = 12 cm; |DC| = 9 cm; |AE| = 8 cm.
\(\Delta\) ABE and \(\Delta\) EDC are similar triangles. Hence,
\(\frac{|AB|}{|DC|} = \frac{|AE|}{|EC|}\)
\(\frac{12}{9} = \frac{8}{|EC|}\)
\(\therefore |EC| = \frac{9 \times 8}{12}\)
= 6 cm