\(3\frac{1}{3}\) hours
5 hours
8 hours
12 hours
Correct answer is D
Let x represent the total number of hours spent per week
\(∴ \frac{75}{360} \times x = \frac{5}{2}\)
\(∴ x = \frac{360 \times 5}{725 \times 2}=12 hours\)
15o
30o
60o
90o
Correct answer is B
Total angle in a circle = 360°
\(\therefore\) 105 + 75 + 2k + k + 3k = 360°
6k = 360 - 180 = 180
k = 180/6 = 30°
\(\frac{1}{5}\)
\(\frac{2}{5}\)
\(\frac{3}{5}\)
\(\frac{4}{5}\)
Correct answer is B
\(A = {3, \sqrt{2}, 2\sqrt{3}, \sqrt{9}, \sqrt{7}}\)
n(A) = 5
Let the rational nos = R
n(R) = 2 (3, \(\sqrt{9}\))
P(R) = 2/5
If \(K\sqrt{28}+\sqrt{63}-\sqrt{7}=0\), find K.
-2
-1
1
2
Correct answer is B
\(K\sqrt{28}+\sqrt{63}-\sqrt{7}=0\)
\(2K\sqrt{7}+3\sqrt{7}-\sqrt{7}=0\)
\(2K\sqrt{7}=-2\sqrt{7}\)
\(K=\frac{-2\sqrt{7}}{2\sqrt{7}}\)
\(K=-1\)
Simplify log\(_7\) 8 - log\(_7\) 2 + log\(_7\) 4.
0
\(2log_7 2\)
\(3log_7 2\)
\(4log_7 2\)
Correct answer is D
log\(_7\) 8 - log\(_7\) 2 + log\(_7\) 4
= log\(_7\) (8/2 x 4)
= log\(_7\) 16
= 4 log\(_7\) 2