28cm2
42cm2
70cm2
84cm2
Correct answer is B
Volume of prism = Area x height
In \(\Delta\) RQP, QR\(^2\) + QP\(^2\) = RP\(^2\)
3\(^2\) + QP\(^2\) = 5\(^2\)
QP\(^2} = 5\(^2\) - 3\(^2\)
QP = \(\sqrt{16}\)
= 4 cm
\(\therefore\) Area = \(\frac{1}{2} \times base \times height\)
= \(\frac{1}{2} \times 3 \times 4\)
= 6 cm\(^2\)
Volume = 6 x 7
= 42 cm\(^3\)
4cm2
6cm2
15cm2
20cm2
Correct answer is B
In \(\Delta\) RQP, QR\(^2\) + QP\(^2\) = RP\(^2\)
3\(^2\) + QP\(^2\) = 5\(^2\)
QP\(^2} = 5\(^2\) - 3\(^2\)
QP = \(\sqrt{16}\)
= 4 cm
\(\therefore\) Area = \(\frac{1}{2} \times base \times height\)
= \(\frac{1}{2} \times 3 \times 4\)
= 6 cm\(^2\)
3cm2
6cm2
14cm2
24cm2
Correct answer is C
\(\frac{LM}{LP} = \frac{3}{4}\)
\(\frac{Area of LMN}{Area of LPQ} = \frac{3^2}{4^2}\)
Area of LPQ = \(\frac{16}{9}\times 18 = 32 cm^2\)
Area of quadrilateral MPQN = 32 – 18 = \(14 cm^2\)
47cm
61cm
88cm
231cm
Correct answer is B
Perimeter of the sector = \(2r + \frac{\theta}{360} \times 2\pi r\)
= \(2(14) + \frac{135}{360} \times 2 \times \frac{22}{7} \times 14\)
= \(28 + 33\)
= 61 cm
16cm
17cm
18cm
20cm
Correct answer is B
From the diagram
\(r^2 = B^2 + 15^2\\
= 64 + 225\\
r = \sqrt{289} = 17cm\)