WAEC Mathematics Past Questions & Answers - Page 204

1,016.

In the diagram, QRT is a straight line. If angle PTR = 90°, angle PRT = 60°, angle PQR = 30° and |PQ| = \(6\sqrt{3}cm\), calculate |RT|

A.

0.3cm

B.

\(\frac{\sqrt{3}}{2}cm\)

C.

3cm

D.

\(3\sqrt{3}cm\)

Correct answer is C

In \(\Delta\) QPT,

\(\frac{PT}{6\sqrt{3}} = \sin 30°\)

PT = \(6\sqrt{3} \times \frac{1}{2} = 3\sqrt{3} cm\)

In \(\Delta\) RPT,

\(\frac{PT}{RT} = \tan 60°\)

\(\frac{3\sqrt{3}}{RT} = \tan 60°\)

\(RT = \frac{3\sqrt{3}}{\sqrt{3}} = 3 cm\)

1,017.

If q oranges are sold for t Naira, how many oranges can be bought for p naira?

A.

\(\frac{p}{2}t\)

B.

\(\frac{qt}{p}\)

C.

\(\frac{q}{pt}\)

D.

\(\frac{pq}{t}\)

Correct answer is D

q oranges = t naira

1 naira = \(\frac{q}{t}\)

p naira = \(p(\frac{q}{t})\)

= \(\frac{pq}{t}\) oranges

1,018.

Factorize m(2a-b)-2n(b-2a)

A.

(2a-b)(2n-m)

B.

(2a+b)(m-2n)

C.

(2a-b)(m+2n)

D.

(2a-b)(m-2n)

Correct answer is C

m(2a - b) - 2n(b - 2a)

= m(2a - b) - (-2n)(2a - b)

= m(2a - b) + 2n(2a - b)

= (m + 2n)(2a - b)

1,019.

Simplify \(3\sqrt{12} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)

A.

\(7\sqrt{3}\)

B.

\(10\sqrt{3}\)

C.

\(14\sqrt{3}\)

D.

\(18\sqrt{3}\)

Correct answer is C

\(3\sqrt{12} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)

= \(3(\sqrt{4 \times 3}) + 10\sqrt{3} - (\frac{6}{\sqrt{3}})(\frac{\sqrt{3}}{\sqrt{3}})\)

= \(6\sqrt{3} + 10\sqrt{3} - 2\sqrt{3}\)

= \(14\sqrt{3}\)

1,020.

The volume of a cylinder of radius 14cm is 210cm3. What is the curved surface area of the cylinder?

A.

15cm2

B.

30cm2

C.

616cm2

D.

1262cm2

Correct answer is B

\(V = \pi r^2 h\\
210 = \frac{22}{7} \times 14^2 \times h \\
h = \frac{210}{22 \times 28}\)
Curved surface area \(= 2r\pi h\\
= 2 \times \frac{22}{7} \times 14 \times \frac{210}{22 \times 26} = 30cm^2\)