Solve for t in the equation \(\frac{3}{4}t+\frac{1}{3}(21-t)\) = 11,
\(\frac{9}{13}\)
\(\frac{9}{5}\)
5
\(9\frac{3}{5}\)
Correct answer is D
\(\frac{3}{4}t+\frac{1}{3}(21-t) = 11; \frac{3t}{4} + \frac{7}{1} - \frac{t}{3} = \frac{11}{1}\\
\frac{3 \times 3t + 7\times 12 – 4 \times t = 11 \times 12}{12}\\
9t + 84 – 4t = 132; 5t = 132 – 84\\
5t = 48; t = \frac{48}{5} = 9\frac{3}{5}\)
Given that sin (5x - 28)o = cos (3x - 50)o,0 < x < 90o, find the value of x
14o
21o
32o
39o
Correct answer is B
Sin (5x – 28)o = cos (3x - 50)o
Since by the trigonometry relation
Sin(5x – 28)o = cos[90 – (5x – 28)]o
Hence cos(3x – 50)o = cos[90 – (5x – 28)]o
3x – 50 = 90 - (5x-28)
3x – 50 = 90 – 5x + 28
3x + 5x = 90 + 28 + 50
8x = 168
\(x = \frac{168}{8}=21^{\circ}\)
If \(y = 23_{five} + 101_{three}\), find y, leaving your answer in base two
1110
10111
11101
111100
Correct answer is B
\(23_{five} = X_{ten}; X_{ten} = 2\times 5^1 + 3\times 5^0 = 10 + 3 = 13\\
101_{three}=P_{ten}; P_{ten} = 1\times 3^2 + 0\times 3^1 + 1\times 3^0=9+0+1=10_{ten}\\
Y = 13+10=23_{ten}\);
Converting to base two
\(\begin{matrix}
2 & 23\\
2 & 11 &R1\\
2 & 5 & R1\\
2 & 2 & R1\\
2 & 1 & R0\\
& 0& R1 \uparrow\\
\end{matrix} \\
=y=10111_2\)
Evaluate \( 202^2_{three} - 112^2_{three}\)
21120
21121
21112
21011
Correct answer is A
\(202^2_{three}\)when converted to base ten \(=(202_3)^2\\
202_3 = 2 \times 3^2 + 0 \times 3^1 + 2\times 3^0 = 18 + 0 + 2\\
=20_{ten}; (202_3)^2 = (20)^2_{ten} = 400\\
112^2_{three}\)when converted to base ten \(= (112_3)^2\\
112_3 = 1 \times 3^2 + 1 \times 3^1 + 2\times 3^0 = 9+3+2=14_{ten}\\
(112_3)^2 = (14)^2_{ten} = 196_{ten}\\
Evaluate \Longrightarrow 400-196 = 204\)
Reconvert to base three
\(\begin{matrix}
3 & 204\\
3 & 69 &R0\\
3 & 22 & R2\\
3 & 7 & R1\\
2 & 2 & R1\\
& 0& R2 \uparrow\\
\end{matrix} \\
=21120_3\)
Which of the following is not a measure of dispersion?
Range
Mean deviation
Mean
Standard deviation
Correct answer is C
No explanation has been provided for this answer.