80.00cm
8.00cm
0.80cm
0.08cm
Correct answer is B
Vol. of cylinder = \(\pi r^2h\) = 1200cm2
Area of base = \(\pi^2\) = 150cm2
h = \(\frac{\pi r^2}{\pi r^2} = \frac{1200}{150}\)
= 8.00cm
422.92cm
149.92cm
44.00cm
43.96cm
Correct answer is C
r = 16, R = 23; 2\(\pi R - 2 \pi r\)
= 2\(\pi(R - r)\)
= 2 x \(\frac{22}{7} (23 - 16)\)
= 2 x \(\frac{22}{7} \times (7)\)
= 44cm
Simplify \(\frac{4}{2x} - \frac{2x + x}{x}\)
-1
-2x
2x
\(\frac{2 - x}{2x}\)
Correct answer is A
\(\frac{4}{2x} - \frac{2 + x}{x} = \frac{4 - 2(2 + x)}{2x}\)
= \(\frac{4 - 4 - 2x}{2x} = \frac{-2x}{2x}\)
= 1
Expand the expression(3a - xy)(3a + xy)
9a2 - x2y2
9a2 + x2y2
9a2 - xy
9a2 + x2y
Correct answer is A
(3a - xy)(3a + xy); (3a)2 - (xy)2
difference of two sqs; 9a2 - x2y2
Find the smallest value of k such that 2\(^2\) x 3\(^3\) x 5 x k is a perfect square.
3
5
15
30
Correct answer is C
2\(^2\) x 3\(^3\) x 5\(^1\) x k;
2\(^2\) x 3\(^2\) x 3 x 5 x k
2\(^2\) x 3\(^2\) x 15 x k
smallest value for k
2\(^2\) x 3\(^2\) x 15 = 2\(^2\) x 3\(^2\) x 15\(^2\)
k = 15