WAEC Further Mathematics Past Questions & Answers - Page 15

71.

If \(x^2+y^2+-2x-6y+5 =0\), evaluate dy/dx when x=3 and y=2.

A.

2

B.

-2

C.

-4

D.

4

Correct answer is A

\(x^2+y^2+-2x-6y+5 =0\)

When differentiated:

\(x^2+y^2+-2x-6y+5 =0\) → 2x + 2y - 2 - 6 = 0

where x=3 and y=2

2[3] + 2[2] - 8 = 0

6 + 4 - 8 = 2

72.

Given that \(\frac{8x+m}{x^2-3x-4} ≡ \frac{5}{x+1} + \frac{3}{x-4}\)

A.

23

B.

17

C.

-17

D.

18

Correct answer is C

\(\frac{8x+m}{x^2-3x-4} ≡ \frac{5}{x+1} + \frac{3}{x-4}\)

\(\frac{8x+m}{x^2-3x-4}\) ≡ \(\frac{5(x-1)+ 3(x+4)}{x^2-3x-4}\)

multiplying both sides by x2-3x-4
8x+m ≡ 5(x-4)+3(x+1)
8x + m ≡ 5x - 20 + 3x + 3
8x - 5x - 3x + m = -20 + 3
m = -17

73.

Differentiate \(\frac{5x^ 3+x^2}{x}\), x ≠ 0 with respect to x.

A.

10x + 1

B.

10x + 2

C.

x(15x + 1)

D.

x(15x + 2)

Correct answer is A

\(\frac{5x^ 3+x^2}{x}\) → \(\frac{5x^ 3}{x} + \frac{x^2}{x}\)

5x\(^2\) + x 

Then dy/dx = 10x + 1

 

74.

If 36, p,\(\frac{9}{4}\) and q are consecutive terms of an exponential sequence (G.P), find the sum of p and q.

A.

9/16

B.

81/16

C.

9

D.

9 \(\frac{9}{16}\)

Correct answer is D

GP : 36, P, \(\frac{q}{4}\), q, ... p + q = ?

Recall, common ratio, r = Tn
Tn-1
= T2
T1
= T3
T2
= T4
T3


 

P
36
= 9
4
÷ p ;       p\(^2\) = 9
4
x 36 ;     p\(^2\) = 81  


 

p = 9         ∴      r = T2
T1
    =   9
36
    =  1
4


 

Also r  = T4
T3
   = q ÷ 9
4



∴ \(\frac{1}{4}\) = q ÷ \(\frac{9}{4}\) ;

\(\frac{9}{4}\) = 4q

16q = 9 ,   q = 9
16
   ∴  p + q  =  9 + 9
16
 =  9 9
16

75.

Evaluate \(∫^0_{-1}\) (x + 1)(x - 2) dx

A.

7/6

B.

5/6

C.

-5/6

D.

-7/6

Correct answer is D

\(∫^0_{-1}\) (x + 1)(x - 2) dx

= \(∫^0_{-1}\) \(x^2 - x - 2\) dx

Integrated \(x^2 - x - 2\) = \(\frac{x^3}{3} - \frac{x^2}{2} -2\)