In the diagram, /PQ/ = /QR/ and /PR/ = /RS/ = /SP/, calculate the side of < QRS
150o
120o
90o
60o
Correct answer is C
Since |PR| = |RS| = |SP|
\(\bigtriangleup\) PRS is equilateral and so < RPS = < PRS = < PSR = 70o
But < PQR + < PSR = 180o (Opposite interior angles of a cyclic quadrilateral)
< PQR + 60 = 180o
< PR = 180 - 60 = 120o
But in \(\bigtriangleup\) PQR, PQ = PR, hence < QPR = < PRQ(Base angles of an Isosceles triangle)
< QPR + < PRQ + < PQR = 180o (Angles in a triangle)
2 < QPR + 120 = 18-
2 < QPR = 180 - 120
QPR = \(\frac{60}{2}\) = 30o
From the diagram, < QRS = < PRQ + < PRS
30 + 60 = 90o
\(\frac{1}{256}\)
\(\frac{1}{16}\)
\(\frac{1}{8}\)
\(\frac{1}{2}\)
Correct answer is C
\(\begin{array}{c|c} - & 2 & 3 & 5 & 9 \\ \hline 2 & 0 & 1 & 3 & 7 \\ \hline 4 & 2 & 1 & 1 & 5\\ \hline 6 & 4 & 3 & 1 & 3 \\ \hline 8 & 6 &5 & 3 & 1 \end{array}\)
Note: A {horizontal}
B {vertical}
Pr(Difference of 6 or 7) = \(\frac{2}{16} = \frac{1}{8}\)
1
\(\frac{3}{4}\)
\(\frac{1}{4}\)
zero
Correct answer is D
\(\begin{array}{c|c} x & 2 & 3 & 5 & 9 \\ \hline 2 & 4 & 6 & 10 & 18 \\ \hline 4 & 8 & 12 & 20 & 36 \\ \hline 6 & 12 & 18 & 30 & 54 \\ \hline 8 & 16 & 24 & 40 & 72 \end{array}\)
Note: A {horizontal}
B {vertical}
Pr (Odd Product) = \(\frac{0}{16}\)
= 0
1
\(\frac{3}{4}\)
\(\frac{1}{2}\)
\(\frac{1}{4}\)
Correct answer is B
A = [2, 4, 6, 8}
B = {2, 3, 5, 9}
Pr = (Prime in B) = \(\frac{3}{4}\)
Solve the inequality 1 - 2x < - \(\frac{1}{3}\)
x < \(\frac{2}{3}\)
x < -\(\frac{2}{3}\)
x > \(\frac{2}{3}\)
x > -\(\frac{2}{3}\)
Correct answer is C
1 - 2x < - \(\frac{1}{3}\); -2x < -\(\frac{1}{3}\) - 1
-2x < - \(\frac{1- 3}{3}\)
-2x < - \(\frac{4}{-6}\)
3x -2x < -4; -8x < -4
x > -\(\frac{4}{-6}\) = x > \(\frac{2}{3}\)