WAEC Further Mathematics Past Questions & Answers - Page 13

61.

Solve: \(3^{2x-2} - 28(3^{x-2}) + 3 = 0\)

A.

x = -2 or x = 1

B.

x = 0 or x = -3

C.

x = 2 or x = 1

D.

x = 0 or x = 3

Correct answer is D

\(3^{2x-2} - 28(3^{x-2}) + 3 = 0\)

\(\frac{3^{2x}}{3^2} - \frac{28.3^x}{3^2} + 3 = 0\)

\(\frac{3^{2x}}{9} - \frac{28.3^x}{9} + 3 = 0\)

let p = 3\(^x\)

\(\frac{p^{2}}{9} - \frac{{28p}}{9} + 3 = 0\)

multiply through by 9
p\(^2\) - 28p + 27 = 0
p\(^2\) - p - 27p + 27 = 0
p (p - 1) - 27(p - 1) = 0
(p-1)(p-27) = 0
p = 1 or 27
when p = 1
p = 3\(^x\)
3\(^x\) = 1
3\(^x\) = 3\(^0\)
x = 0
when p = 27
3x = 27
3x = 33
x = 3

62.

In how many ways can six persons be paired?

A.

5

B.

10

C.

15

D.

20

Correct answer is C

6C\(_2 = \frac{6!}{[6-2]![2!]}\)

\(\frac{6*5*4!}{4!*2!}\)

= \(\frac{6*5}{2}\)

= 15

63.

If Un = kn\(^2\) + pn, U\(_1\) = -1, U\(_5\) = 15, find the values of k and p.

A.

k = -1, p = 2

B.

k = -1, p = -2

C.

k = 1, p = -2

D.

k = 1, p = 2

Correct answer is C

Un = kn\(^2\) + pn,

U\(_1\) = -1,

U\(_5\) = 15,

when n = 1
U1 = k(1)\(^2\)+ p(1) = -1
k + p = -1 --------eqn1
when n = 5
U\(_5\) = k(5)\(^2\)+ p(5) = 15
25k + 5p = 15 --------eqn2
multiply eqn1 by 5 and eqn2 by 1
5k + 5p = -5 -------eqn3
25k + 5p = 15 -------eqn4
eqn4 - eqn3
20k = 20
k = 1
sub for k in eqn1
1 + p = -1
p = -1 -1 = -2

64.

A particle moving with a velocity of 5m/s accelerates at 2m/s\(^2\). Find the distance it covers in 4 seconds.

A.

16m

B.

26m

C.

36m

D.

46m

Correct answer is C

from the equation of motion

u = 5m/s, a = 2m/s\(^2\), t = 4s 

s = ut + \(\frac{1}{2} at^2\)

s = 5*4 + \(\frac{1}{2} 2*4^2\)

s =  20 + 16

s = 36m

65.

Given that P = {x: x is a multiple of 5}, Q = {x: x is a multiple of 3} and R = {x: x is an odd number} are subsets of μ = {x: 20 ≤ x ≤ 35}, (P⋃Q)∩R.

A.

{20, 21, 25, 30, 33}

B.

{21, 25, 27, 33, 35}

C.

{20, 21, 25, 27, 33, 35}

D.

{21, 25, 27, 30, 33, 35}

Correct answer is B

P = { 20, 25, 30, 35}, Q = {21, 24, 27, 30, 33}, R = {21, 23, 25, 27, 29, 31, 33, 35}


(P⋃Q)∩R = {20, 21, 24, 25, 27, 30, 33, 35} ∩ {21, 23, 25, 27, 29, 31, 33, 35}


= {21, 25, 27, 33, 35}